Skip to main content
Log in

Enhancing estimation precision of parameter for a two-level atom with circular motion

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We find a way to improve the estimation precision of parameter by enhancing the quantum Fisher information (QFI) of parameter by investigating the dynamics of a two-level atom with circular motion which is coupled to the scalar field in open quantum system. Our results illustrate that the QFI of phase decreases with the increase in centripetal acceleration and the evolution of time. However, in contrast to the unbounded case, we find that the QFI of phase decreases slowly with a boundary. Especially, the QFI tends to 1 when the atom is very close to the boundary, which implies that the atom is shielded from the influence of the vacuum fluctuation with a boundary. Therefore, we can enhance the estimation precision of the parameter by choosing an appropriate position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)

    MATH  Google Scholar 

  2. Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory [M]. Springer Science & Business Media, Moscow (2011)

    Book  Google Scholar 

  3. Giovanetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330 (2004)

    Article  ADS  Google Scholar 

  4. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96(1), 010401 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  5. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photonics 5, 222–229 (2011)

    Article  ADS  Google Scholar 

  6. Yao, Y., Xiao, X., Ge, Li, Wang, X.g, Sun, C.p: Quantum Fisher information in noninertial frames. Phys. Rev. A. 89, 042336 (2014)

    Article  ADS  Google Scholar 

  7. Li, N., Luo, S.: Entanglement detection via quantum Fisher information. Phys. Rev. A 88, 014301 (2013)

    Article  ADS  Google Scholar 

  8. Bužek, V., Derka, R., Massar, S.: Optimal quantum clocks. Phys. Rev. Lett. 82(10), 2207 (1999)

    Article  ADS  Google Scholar 

  9. Lucien, J.B.: Measurement of gravity at sea and in the air. Rev. Geophis. 5(4), 477–526 (1967)

    Article  ADS  Google Scholar 

  10. Poli, N., Wang, F.Y., Tarallo, M.G., Alberti, A., Prevedelli, M., Tinox, G.M.: Precision measurement of gravity with cold atoms in an optical lattice and comparison with a classical gravimeter. Phys. Rev. Lett. 106(3), 038501 (2011)

    Article  ADS  Google Scholar 

  11. Liu, P., Wang, P., Yang, W., Jin, G.R., Sun, C.P.: Fisher information of a squeezed-state interferometer with a finite photon-number resolution. Phys. Rev. A 95, 023824 (2017)

    Article  ADS  Google Scholar 

  12. Liu, P., Jin, G.R.: Ultimate phase estimation in a squeezed-state interferometer using photon counters with a finite number resolution. J. Phys. A: Math. Theor. 50(40), 405303 (2017)

    Article  MathSciNet  Google Scholar 

  13. Zhang, Y.M., Li, X.W., Yang, W., Jin, G.R.: Quantum Fisher information of entangled coherent states in the presence of photon loss. Phys. Rev. A 88(4), 043832 (2013)

    Article  ADS  Google Scholar 

  14. Wang, T.L., Wu, L.N., Yang, W.: Quantum Fisher information as a signature of the superradiant quantum phase transition. New J. Phys. 16(16), 063039 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  15. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  16. Vittorio, G., Seth, L., Lorenzo, M.: Advances in quantum metrology. Nat. Photonics 5(4), 222 (2011)

    Article  Google Scholar 

  17. Pezzé, L., Smerzi, A.: Entanglement, nonlinear dynamics, and the Heisenberg limit. Phys. Rev. Lett. 102, 100401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  18. Hyllus, P., Laskowski, W., Krischek, R., Schwemmer, C., Wieczorek, W., Weinfurter, H., Pezzé, L., Smerzi, A.: Fisher information and multiparticle entanglement. Phys. Rev. A 85, 022321 (2012)

    Article  ADS  Google Scholar 

  19. Tóth, G.: Multipartite entanglement and high-precision metrology. Phys. Rev. A 85, 022322 (2012)

    Article  ADS  Google Scholar 

  20. Krischek, R., Schwemmer, C., Wieczorek, W., Weinfurter, H., Hyllus, P., Pezzé, L., Smerzi, A.: Useful multiparticle entanglement and sub-shot-noise sensitivity in experimental phase estimation. Phys. Rev. Lett. 107, 080504 (2011)

    Article  ADS  Google Scholar 

  21. Strobel, H., Muessel, W., Linnemann, D., Zibold, T., Hume, D.B., Pezze, L., Smerzi, A., Oberthaler, M.K.: Fisher information and entanglement of non-Gaussian spin states. Science 345, 424 (2014)

    Article  ADS  Google Scholar 

  22. Huber, S., Konig, R., Vershynina, A.: Geometric inequalities from phase space translations. J. Math. Phys. 58, 012206 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  23. Datta, N., Pautrat, Y., Rouz, C.: Contractivity properties of a quantum diffusion semigroup. J. Math. Phys. 58, 012205 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  24. Augusiak, R., Kołodyński, J., Streltsov, A., Bera, M.N., Acín, A., Lewenstein, M.: Asymptotic role of entanglement in quantum metrology. Phys. Rev. A 94, 012339 (2016)

    Article  ADS  Google Scholar 

  25. Kim, S.K., Soh, K.S., Yee, J.H.: Zero-point field in a circular-motion frame. Phys. Rev. D 35, 557 (1987)

    Article  ADS  Google Scholar 

  26. Bell, J.S., Leinaas, J.M.: The Unruh effect and quantum fluctuations of electrons in storage rings. Nuclear Phys. B 284, 488–508 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  27. Jackson, J.D.: On understanding spin-flip synchrotron radiation and the transverse polarization of electrons in storage rings. Rev. Mod. Phys. 48, 417 (1976)

    Article  ADS  Google Scholar 

  28. Derbenev, Y.S., Kondratenko, A.M.: Polarization kinetics of particles in storage rings. Sov. Phys. JETP 37, 968 (1973)

    ADS  Google Scholar 

  29. Barber, D.P., Mane, S.R.: Calculations of Bell and Leinaas and Derbenev and Kondratenko for radiative electron polarization. Phys. Rev. A 37, 456 (1988)

    Article  ADS  Google Scholar 

  30. Akhmedov, E.T., Singleton, D.: On the relation between Unruh and Sokolov–Ternov effects. Int. J. Mod. Phys. A 22(26), 4797–4823 (2007)

    Article  ADS  Google Scholar 

  31. Dalibard, J., Dupont-Roc, J., Cohen-Tannoudji, C.: Vacuum fluctuations and radiation reaction: identification of their respective contributions. J. Phys. 43, 1617–1638 (1982)

    Article  Google Scholar 

  32. Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge university press, Cambridge (1984)

    MATH  Google Scholar 

  33. Tian, Z.H., Jing, J.L.: Measurement-induced-nonlocality via the Unruh effect. Ann. Phys. 333, 76–89 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  34. Jia, L.J., Tian, Z.H., Jing, J.L.: Entropic uncertainty relation in de Sitter space. Ann. Phys. 353, 37–47 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  35. Liu, X.B., Tian, Z.H., Wang, J.C., Jing, J.L.: Inhibiting decoherence of two-level atom in thermal bath by presence of boundaries. Quantum Inf. Process. 15, 3677–3694 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  36. Yang, Y., Liu, X., Wang, J., Jing, J.: Quantum metrology of phase for accelerated two-level atom coupled with electromagnetic field with and without boundary. Quantum Inf. Process. 17(3), 54 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  37. Liu, X.B., Tian, Z.H., Wang, J.C., Jing, J.L.: Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field. Ann. Phys. 366, 102–112 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  38. Compagno, G., Passante, R., Persico, F.: Atom-Field Interactions and Dressed Atoms. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  39. Cramér, H.: Mathematical Methods of Statistics. Princeton University, Princeton (1946)

    MATH  Google Scholar 

  40. Gorini, V., Andrzej, K., Ennackal, C.G.S.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821–825 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  41. Benatti, F., Floreanini, R.: Controlling entanglement generation in external quantum fields. J. Opt. B: Quantum Semiclassical Opt. 7, S429 (2005)

    Article  ADS  Google Scholar 

  42. Benatti, F., Floreanini, R., Piani, M.: Environment induced entanglement in Markovian dissipative dynamics. Phys. Rev. Lett. 91, 070402 (2003)

    Article  ADS  Google Scholar 

  43. Bell, J.S., Leinaas, J.M.: Electrons as accelerated thermometers. Nuclear Phys. B 212, 131–150 (1983)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11875025 and 11705144, and the Scientific Research Program of Education Department of Shaanxi Provincial Government (17JK0706).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiliang Jing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Jing, J. & Zhao, Z. Enhancing estimation precision of parameter for a two-level atom with circular motion. Quantum Inf Process 18, 120 (2019). https://doi.org/10.1007/s11128-019-2235-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2235-4

Keywords

Navigation