Skip to main content
Log in

Quantification of resource theory of imaginarity

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Complex numbers are indispensable parts of describing states of quantum systems and their dynamic behavior, and they are widely used in classical and quantum physics. In recent years, some studies and experiments have shown the necessity of complex numbers in quantum physics. In this work, we investigate the quantification of imaginarity and explore connections of several properties of imaginary measures. In addition, we focus on two specific imaginarity measures: the weight of imaginarity and the relative entropy of imaginarity, proving that they have some nice properties. We also study the corresponding semidefinite programming form of the weight of imaginarity and obtain a closed expression of the relative entropy of imaginarity. Moreover, we analyze the quantitative relationships of several imaginarity measures. Our work further studies the quantification of imaginarity, and provides two concrete measures with interesting properties for imaginarity, which will contribute to the development of quantum mechanics and quantum technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brandão, F.G.S.L., Gour, G.: Reversible framework for quantum resource theories. Phys. Rev. Lett. 115, 070503 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  2. Chitambar, E., Gour, G.: Quantum resource theories. Rev. Mod. Phys. 91, 025001 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  3. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

  7. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  8. Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)

    Article  ADS  Google Scholar 

  9. Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  10. Li, P., Luo, Y., Li, Y.M.: Distillability for non-full-rank coherent states in the probabilistic framework. Quantum Inf. Process. 19, 374 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  11. Goold, J., Huber, M., Riera, A., del Rio, L., Skrzypczyk, P.: The role of quantum information in thermodynamics—a topical review. J. Phys. A 49, 143001 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Lostaglio, M.: An introductory review of the resource theory approach to thermodynamics. Rep. Prog. Phys. 82, 114001 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  13. Gour, G., Spekkens, R.W.: The resource theory of quantum reference frames: manipulations and monotones. New J. Phys. 10, 033023 (2008)

    Article  ADS  Google Scholar 

  14. Gour, G., Marvian, I., Spekkens, R.W.: Measuring the quality of a quantum reference frame: the relative entropy of frameness. Phys. Rev. A 80, 012307 (2009)

    Article  ADS  Google Scholar 

  15. Marvian, I., Spekkens, R.W.: The theory of manipulations of pure state asymmetry: I. Basic tools, equivalence classes and single copy transformations. New J. Phys. 15, 033001 (2013)

    Article  ADS  MATH  Google Scholar 

  16. Marvian, I., Spekkens, R.W.: Extending Noether’s theorem by quantifying the asymmetry of quantum states. Nat. Commun. 5, 3821 (2014)

  17. del Rio, L., Kraemer, L., Renner, R.: Resource theories of knowledge. arXiv:1511.08818 (2015)

  18. Howard, M., Campbell, E.T.: Application of a resource theory for magic states to fault-tolerant quantum computing. Phys. Rev. Lett. 118, 090501 (2017)

    Article  ADS  Google Scholar 

  19. Ahmadi, M., Dang, H.B., Gour, G., Sanders, B.C.: Quantification and manipulation of magic states. Phys. Rev. A 97, 062332 (2018)

    Article  ADS  Google Scholar 

  20. Horodecki, M., Horodecki, P., Oppenheim, J.: Reversible transformations from pure to mixed states and the unique measure of information. Phys. Rev. A 67, 062104 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  21. Gour, G., Müller, M.P., Narasimhachar, V., Spekkens, R.W., Yunger Halpern, N.: The resource theory of informational nonequilibrium in thermodynamics. Phys. Rep. 583, 1 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Streltsov, A., Kampermann, H., Wölk, S., Gessner, M., Bruß, D.: Maximal coherence and the resource theory of purity. New J. Phys. 20, 053058 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  23. Wootters, W.K.: Entanglement sharing in real-vector-space quantum theory. Found. Phys. 42, 19 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Hardy, L., Wootters, W.K.: Limited holism and real-vector-space quantum theory. Found. Phys. 42, 454 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Aleksandrova, A., Borish, V., Wootters, W.K.: Real-vector-space quantum theory with a universal quantum bit. Phys. Rev. A 87, 052106 (2013)

    Article  ADS  Google Scholar 

  26. Hickey, A., Gour, G.: Quantifying the imaginarity of quantum mechanics. J. Phys. A: Math. Theor. 51, 414009 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wu, K.-D., Kondra, T.V., Rana, S., Scandolo, C.M., Xiang, G.-Y., Li, C.-F., Guo, G.-C., Streltsov, A.: Operational resource theory of imaginarity. Phys. Rev. Lett. 126, 090401 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  28. Wu, K.-D., Kondra, T.V., Rana, S., Scandolo, C.M., Xiang, G.-Y., Li, C.-F., Guo, G.-C., Streltsov, A.: Resource theory of imaginarity: quantification and state conversion. Phys. Rev. A 103, 032401 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  29. Lewenstein, M., Sanpera, A.: Separability and entanglement of composite quantum systems. Phys. Rev. Lett. 80, 2261 (1998)

    Article  ADS  Google Scholar 

  30. Skrzypczyk, P., Navascués, M., Cavalcanti, D.: Quantifying Einstein–Podolsky–Rosen steering. Phys. Rev. Lett. 112, 180404 (2014)

    Article  ADS  Google Scholar 

  31. Pusey, M.F.: Verifying the quantumness of a channel with an untrusted device. J. Opt. Soc. Am. B 32, A56 (2015)

    Article  ADS  Google Scholar 

  32. Cavalcanti, D., Skrzypczyk, P.: Quantitative relations between measurement incompatibility, quantum steering, and nonlocality. Phys. Rev. A 93, 052112 (2016)

    Article  ADS  Google Scholar 

  33. Ducuara, A.F., Skrzypczyk, P.: Operational interpretation of weight-based resource quantifiers in convex quantum resource theories. Phys. Rev. Lett. 125, 110401 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  34. Bu, K., Anand, N., Singh, U.: Asymmetry and coherence weight of quantum states. Phys. Rev. A 97, 032342 (2018)

    Article  ADS  Google Scholar 

  35. Regula, B., Takagi, R.: Fundamental limitations on quantum channel manipulation. arXiv:2010.11942 (2020)

  36. Yu, X.-D., Zhang, D.-J., Xu, G.F., Tong, D.M.: Alternative framework for quantifying coherence. Phys. Rev. A 94, 060302(R) (2016)

    Article  ADS  Google Scholar 

  37. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38, 49 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  38. Watrous, J.: Semidefinite programs for completely bounded norms. Theory Comput. 5, 217 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Xu, J., Shao, L.-H., Fei, S.-M.: Coherence measures with respect to general quantum measurements. Phys. Rev. A 102, 012411 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  40. Lindblad, G.: Completely positive maps and entropy inequalities. Commun. Math. Phys. 40, 147 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Ruskai, M.B.: Inequalities for quantum entropy: a review with conditions for equality. J. Math. Phys. (N.Y.) 43, 4358 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  43. Vedral, V., Plenio, M.B.: Entanglement measures and purification procedures. Phys. Rev. A 57, 1619 (1998)

    Article  ADS  Google Scholar 

  44. Vollbrecht, K.G.H., Werner, R.F.: Entanglement measures under symmetry. Phys. Rev. A 64, 062307 (2001)

    Article  ADS  Google Scholar 

  45. Gisin, N.: Hidden quantum nonlocality revealed by local filters. Phys. Lett. A 210, 151 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This paper was supported by Fundamental Research Funds for the Central Universities (Grant No.: GK201703002) and National Science Foundation of China (Grant Nos.: 12071271, 11671244).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiansheng Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, S., Guo, J., Li, P. et al. Quantification of resource theory of imaginarity. Quantum Inf Process 20, 383 (2021). https://doi.org/10.1007/s11128-021-03324-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03324-5

Keywords

Navigation