Skip to main content
Log in

Modeling network traffic by a cluster Poisson input process with heavy and light-tailed file sizes

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

We consider a cluster Poisson model with heavy-tailed interarrival times and cluster sizes as a generalization of an infinite source Poisson model where the file sizes have a regularly varying tail distribution function or a finite second moment. One result is that this model reflects long-range dependence of teletraffic data. We show that depending on the heaviness of the file sizes, the interarrival times and the cluster sizes we have to distinguish different growths rates for the time scale of the cumulative traffic. The mean corrected cumulative input process converges to a fractional Brownian motion in the fast growth case. However, in the intermediate and the slow growth case we can have convergence to a stable Lévy motion or a fractional Brownian motion as well depending on the heaviness of the underlying distributions. These results are contrary to the idea that cumulative broadband network traffic converges in the slow growth case to a stable process. Furthermore, we derive the asymptotic behavior of the cluster Poisson point process which models the arrival times of data packets and the individual input process itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, K.K., Athreya, K.B.: A strong renewal theorem for generalized renewal functions in the infinite mean case. Probab. Theory Relat. Fields 77, 471–479 (1988)

    Article  Google Scholar 

  2. Baccelli, F., Brémaud, P.: Elements of Queueing Theory: Palm Martingale Calculus and Stochastic Recurrences. Springer, Heidelberg (2003)

    Google Scholar 

  3. Billingsley, P.: Convergence of Probability and Measures, 1st edn. Wiley, New York (1968)

    Google Scholar 

  4. Billingsley, P.: Probability and Measure, 2nd edn. Wiley, New York (1986)

    Google Scholar 

  5. Billingsley, P.: Convergence of Probability and Measures, 2nd edn. Wiley, New York (1999)

    Book  Google Scholar 

  6. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  7. Crovella, M., Bestavros, A.: Explaining world wide web traffic self-similarity. Preprint (1995)

  8. Crovella, M., Bestavros, A.: Self-similarity in world wide web traffic: evidence and possible causes. IEEE/ACM Trans. Netw. 5, 835–846 (1997)

    Article  Google Scholar 

  9. Crovella, M., Taqqu, M., Bestavros, A.: Heavy-tailed probability distributions in the world wide web. In: Adler, R., Epstein, R. (eds.) A Practical Guide to Heavy Tails: Statistical Techniques for Analysing Heavy Tailed Distributions, pp. 3–26. Birkhäuser, Boston (1999)

    Google Scholar 

  10. Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Vol. I: Elementary Theory and Methods, 2nd edn. Springer, New York (2003)

    Google Scholar 

  11. Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Vol. II: General Theory and Structure, 2nd edn. Springer, New York (2008)

    Book  Google Scholar 

  12. Doney, R.: One-sided local large deviation and renewal theorems in the case of infinite mean. Probab. Theory Relat. Fields 107, 451–465 (1997)

    Article  Google Scholar 

  13. Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events for Insurance and Finance. Springer, Berlin (1997)

    Google Scholar 

  14. Faÿ, G., González-Arévalo, B., Mikosch, T., Samorodnitsky, G.: Modeling teletraffic arrivals by a Poisson cluster process. Queueing Syst. 54, 121–140 (2006)

    Article  Google Scholar 

  15. Fasen, V., Samorodnitsky, G.: A fluid cluster Poisson input process can look like a fractional Brownian motion even in the slow growth aggregation regime. Adv. Appl. Probab. 41, 393–427 (2009)

    Article  Google Scholar 

  16. Gaigalas, R., Kaj, I.: Convergence of scaled renewal processes and a packet arrival model. Bernoulli 9, 671–703 (2003)

    Article  Google Scholar 

  17. Guerin, C., Nyberg, H., Perrin, O., Resnick, S., Rootzén, H., Stărică, C.: Empirical testing of the infinite source Poisson data traffic model. Stoch. Models 19, 151–200 (2003)

    Article  Google Scholar 

  18. Hernandes-Campos, H., Marron, S., Samorodnitsky, G., Smith, F.: Variable heavy tailed durations in Internet traffic. Perform. Eval. 58, 261–284 (2004)

    Article  Google Scholar 

  19. Kaj, I., Taqqu, M.S.: Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach. In: Vares, M.E., Sidoravicius, V. (eds.) Out of Equilibrium 2. Progress in Probability, vol. 60, pp. 383–427. Birkhäuser, Boston (2008)

    Chapter  Google Scholar 

  20. Kallenberg, O.: Foundations of Modern Probability, 2nd edn. Springer, New York (2002)

    Google Scholar 

  21. Karr, A.F.: Point Processes and Their Statistical Inference. Marcel Decker, New York (1986)

    Google Scholar 

  22. Leland, W.E., Taqqu, M.S., Willinger, W., Wilson, D.V.: On the self-similar nature of Ethernet traffic (extended version). IEEE/ACM Trans. Netw. 2, 1–15 (1994)

    Article  Google Scholar 

  23. Levy, J., Taqqu, M.S.: On renewal processes having stable inter-renewal intervals and stable rewards. Ann. Sci. Math. Québec 11, 95–110 (1987)

    Google Scholar 

  24. Levy, J., Taqqu, M.S.: Renewal reward processes with heavy-tailed inter-renewal intervals and stable rewards. Bernoulli 6, 23–44 (2000)

    Article  Google Scholar 

  25. Mikosch, T., Resnick, S., Rootzén, H., Stegeman, A.: Is network traffic approximated by stable Lévy motion or fractional Brownian motion? Ann. Appl. Probab. 12, 23–68 (2002)

    Article  Google Scholar 

  26. Mikosch, T., Samorodnitsky, G.: Scaling limits for cumulative input processes. Math. Oper. Res. 32, 890–919 (2007)

    Article  Google Scholar 

  27. Omey, E.: Multivariate regular variation and its applications in probability theory. Ph.D. thesis, University of Leuven (1982)

  28. Pipiras, V., Taqqu, M.: Slow, fast and arbitrary growth conditions for renewal-reward processes when both the renewals and the rewards are heavy-tailed. Bernoulli 10, 121–163 (2004)

    Article  Google Scholar 

  29. Resnick, S., Van den Berg, E.: Convergence of high-speed network traffic models. J. Appl. Probab. 37, 575–597 (2000)

    Article  Google Scholar 

  30. Resnick, S.I.: Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer, New York (2007)

    Google Scholar 

  31. Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  32. Taqqu, M.S., Levy, J.: Using renewal processes to generate long-range dependence and high variability. In: Eberlein, E., Taqqu, M.S. (eds.) Dependence in Probability and Statistics, pp. 73–89. Birkhäuser, Boston (1986)

    Google Scholar 

  33. Whitt, W.: Limits for cumulative input processes to queues. Tech. Rep., AT&T Labs (1999)

  34. Whitt, W.: Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and Their Applications to Queues. Springer, New York (2002)

    Google Scholar 

  35. Willinger, W., Taqqu, M., Sherman, R., Wilson, D.: Self-similarity through high-variability: statistical analysis of Ethernet LAN traffic at the source level. IEEE/ACM Trans. Netw. 5, 71–86 (1997)

    Article  Google Scholar 

  36. Zolotarev, V.: Mellin–Stieltjes transforms in probability theory. Theory Probab. Appl. 2, 433–459 (1957)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicky Fasen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fasen, V. Modeling network traffic by a cluster Poisson input process with heavy and light-tailed file sizes. Queueing Syst 66, 313–350 (2010). https://doi.org/10.1007/s11134-010-9196-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-010-9196-8

Keywords

Mathematics Subject Classification (2000)

Navigation