Skip to main content
Log in

Robust queueing theory: an initial study using imprecise probabilities

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

We study the robustness of performance predictions of discrete-time finite-capacity queues by applying the framework of imprecise probabilities. More concretely, we consider the Geo/Geo/1/L model with probabilities of arrival and departure that are no longer fixed, but are allowed to vary within given intervals. We distinguish between two concepts of independence in this framework, namely repetition independence and epistemic irrelevance. In the first approach, we assume the existence of time-homogeneous probabilities for arrival and departure, which leads us to consider a collection of stationary queues. In the second, the stationarity assumption is dropped and we allow the arrival and departure probabilities to vary from time point to time point; they may even depend on the complete history of queue lengths. We calculate bounds on the expected queue length, the probability of a particular queue length and the probability of turning on the server. For the expected queue length, both approaches coincide. For the other performance measures, we observe and discuss various differences between the bounds obtained for these two approaches. One of our observations is that ergodicity may break down due to imprecision: bounds on expected time averages of certain functions on the state space are not necessarily equal to the bounds on the expectation of that function at random instants in a steady-state queue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. A good overview can be obtained by perusing the proceedings of the biennial ISIPTA conferences at www.sipta.org.

References

  1. Alfa, A.S.: Queueing Theory for Telecommunications: Discrete Time Modelling of a Single Node System, 1st edn. Springer, New York (2010)

    Book  Google Scholar 

  2. Altman, E., Avrachenkov, K.E., Núñez-Queija, R.: Perturbation analysis for denumerable Markov chains with application to queueing models. Adv. Appl. Prob. 36, 839–853 (2004)

    Article  Google Scholar 

  3. Augustin, T., Coolen, F.P., De Cooman, G., Troffaes, M.C. (eds.): Introduction to Imprecise Probabilities. Wiley (2014)

  4. Boole, G.: Studies in Logic and Probability. Dover Publications, Mineola (2004, reprint of the work originally published by Watts & Co., London, in 1952)

  5. Bucklew, J.A., Ney, P., Sadowsky, J.S.: Monte Carlo simulation and large deviations theory for uniformly recurrent Markov chains. J. Appl. Prob. 27, 44–59 (1990)

    Article  Google Scholar 

  6. Cao, X.R., Chen, H.F.: Perturbation realization, potentials, and sensitivity analysis of Markov processes. IEEE Trans. Autom. Control 42(10), 1382–1393 (1997)

    Article  Google Scholar 

  7. Chaudhry, M.L.: On numerical computations of some discrete-time queues. In: Computational Probability, Chap. 10, pp. 365–408. Springer (2000)

  8. Couso, I., Moral, S., Walley, P.: A survey of concepts of independence for imprecise probabilities. Risk Decis. Policy 5(02), 165–181 (2000)

    Article  Google Scholar 

  9. De Cooman, G., De Bock, J., Lopatatzidis, S.: A pointwise ergodic theorem for imprecise Markov chains. In: Augustin, T., Doria, S., Miranda, E., Quaeghebeur E. (eds.) ISIPTA ’15—Proceedings of the Ninth International Symposium on Imprecise Probability: Theories and Applications, pp. 107–116. Aracne Editrice (2015)

  10. De Cooman, G., Hermans, F., Antonucci, A., Zaffalon, M.: Epistemic irrelevance in credal networks: the case of imprecise Markov trees. In: Augustin, T., Coolen, F.P.A., Moral, S., Troffaes, M.C.M. (eds.) ISIPTA ’09—Proceedings of the Sixth International Symposium on Imprecise Probability: Theories and Applications, pp. 149–158. SIPTA, SIPTA, Durham,(2009). http://www.sipta.org/isipta09/proceedings/053.html

  11. De Cooman, G., Hermans, F., Quaeghebeur, E.: Imprecise Markov chains and their limit behaviour. Prob. Eng. Inf. Sci. 23(4), 597–635 (2009). doi:10.1017/S0269964809990039. arXiv:0801.0980

    Article  Google Scholar 

  12. De Bock, J., De Cooman, G.: An efficient algorithm for estimating state sequences in imprecise hidden Markov models. J. Artif. Intell. Res. 50, 189–233 (2014)

    Google Scholar 

  13. Gross, D., Shortle, J.F., Thompson, J.M., Harris, C.M.: Fundamentals of Queueing Theory. Wiley, New York (2013)

    Google Scholar 

  14. Hermans, F., De Cooman, G.: Characterisation of ergodic upper transition operators. Int. J. Approximate Reasoning 53(4), 573–583 (2012). doi:10.1016/j.ijar.2011.12.008

    Article  Google Scholar 

  15. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Undergraduate Text in Mathematics. Springer, New York (1976). Reprint of the 1960 Edition

    Google Scholar 

  16. Keynes, J.M.: A Treatise on Probability. Macmillan, London (1921)

    Google Scholar 

  17. Levi, I.: The Enterprise of Knowledge. MIT Press, London (1980)

    Google Scholar 

  18. Quaeghebeur, E.: Learning from samples using coherent lower previsions. Ph.D. thesis, Ghent University (2008)

  19. Rubinstein, R.Y.: Optimization of computer simulation models with rare events. Eur. J. Oper. Res. 99(1), 89–112 (1997)

    Article  Google Scholar 

  20. Schweitzer, P.J.: Perturbation theory and finite Markov chains. J. Appl. Prob. 5, 401–413 (1968)

    Article  Google Scholar 

  21. Seidenfeld, T., Schervish, M.J., Kadane, J.B.: Rethinking the Foundations of Statistics. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  22. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    Google Scholar 

  23. Shafer, G.: The Art of Causal Conjecture. The MIT Press, Cambridge (1996)

    Google Scholar 

  24. Smith, C.A.B.: Consistency in statistical inference and decision. J. Royal Stat. Soc. A 23, 1–37 (1961)

    Google Scholar 

  25. Troffaes, M.C.M., De Cooman, G.: Lower Previsions. Wiley, New York (2014)

    Google Scholar 

  26. Škulj, D., Hable, R.: Coefficients of ergodicity for Markov chains with uncertain parameters. Metrika 76(1), 107–133 (2013). doi:10.1007/s00184-011-0378-0

    Article  Google Scholar 

  27. Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London (1991)

    Book  Google Scholar 

  28. Walley, P.: Inferences from multinomial data: learning about a bag of marbles. J. Royal Stat. Soc. B 58, 3–57 (1996). With discussion

    Google Scholar 

  29. Walley, P.: Towards a unified theory of imprecise probability. Int. J. Approximate Reasoning 24, 125–148 (2000)

    Article  Google Scholar 

  30. Weichselberger, K.: The theory of interval-probability as a unifying concept for uncertainty. Int. J. Approximate Reasoning 24, 149–170 (2000)

    Article  Google Scholar 

  31. White, J.A.: Analysis of Queueing Systems. Elsevier, Amsterdam (2012)

    Google Scholar 

  32. Whittle, P.: Probability Via Expectation, 4th edn. Springer, New York (2000)

    Book  Google Scholar 

  33. Williams, P.M.: Notes on conditional previsions. Technical report, School of Mathematical and Physical Science, University of Sussex (1975). Revised journal version: [35]

  34. Williams, P.M.: Indeterminate probabilities. In: M. Przelecki, K. Szaniawski, R. Wojcicki (eds.) Proceedings of a 1974 Conference Held in Warsaw. Formal Methods in the Methodology of Empirical Sciences, pp. 229–246. Reidel, Dordrecht (1976)

  35. Williams, P.M.: Notes on conditional previsions. Int. J. Approximate Reasoning 44, 366–382 (2007). Revised journal version of [33]

  36. Xia, L., Cao, X.R.: Performance optimization of queueing systems with perturbation realization. Eur. J. Oper. Res. 218, 293–304 (2012)

    Article  Google Scholar 

  37. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  Google Scholar 

Download references

Acknowledgments

Research for this paper by Stavros Lopatatzidis, Gert de Cooman, Stijn De Vuyst and Joris Walraevens was funded through project number 3G012512 of the Research Foundation Flanders (FWO). Jasper De Bock is a PhD Fellow of the FWO and wishes to acknowledge its financial support. The authors would also like to thank three anonymous referees for their many helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stavros Lopatatzidis.

Appendices

Appendix

Proofs

Proof of Theorem 1

First notice that

$$\begin{aligned} \underline{E}^{{\text {EI}}}_{1:n}{\left( f\vert X_{1:m}\right) }&=\min {{\left\{ E^{p_{A,D}}_{1:n}{\left( f\vert X_{1:m}\right) }:p_{A,D}\in \mathscr {T}^{{\text {EI}}}\right\} }}\\&=\min {{\left\{ E^{p_{A,D}}_{1:n-1}{\left( E^{p_{A,D}}_{1:n}{\left( f\vert X_{1:n-1}\right) }\vert X_{1:m}\right) }:p_{A,D}\in \mathscr {T}^{{\text {EI}}}\right\} }}\\&=\min {{\left\{ E^{p_{A,D}}_{1:n-1}{\left( E^{p'_{A,D}}_{1:n}{\left( f\vert X_{1:n-1}\right) }\vert X_{1:m}\right) }:p_{A,D}\in \mathscr {T}^{{\text {EI}}},p'_{A,D}\in \mathscr {T}^{{\text {EI}}}\right\} }}\\&=\min {{\left\{ E^{p_{A,D}}_{1:n-1}{\left( \underline{E}^{{\text {EI}}}_{1:n}{\left( f\vert X_{1:n-1}\right) }\vert X_{1:m}\right) }:p_{A,D}\in \mathscr {T}^{{\text {EI}}}\right\} }}\\&=\underline{E}^{{\text {EI}}}_{1:n-1}{\left( \underline{E}^{{\text {EI}}}_{1:n}{\left( f\vert X_{1:n-1}\right) }\vert X_{1:m}\right) }, \end{aligned}$$

where the crucial third equality holds because the local probabilities of the probability trees in \(\mathscr {T}^{{\text {EI}}}\) are chosen independently of each other. By continuing in this way, we find that

$$\begin{aligned}&\underline{E}^{{\text {EI}}}_{1:n}{\left( f\vert X_{1:m}\right) }\\&\quad =\underline{E}^{{\text {EI}}}_{1:n-1}{\left( \underline{E}^{{\text {EI}}}_{1:n}{\left( f\vert X_{1:n-1}\right) }\vert X_{1:m}\right) }\\&\quad =\underline{E}^{{\text {EI}}}_{1:n-2}{\left( \underline{E}^{{\text {EI}}}_{1:n-1}{\left( \underline{E}^{{\text {EI}}}_{1:n}{\left( f\vert X_{1:n-1}\right) }\vert X_{1:n-2}\right) }\vert X_{1:m}\right) }\\&\quad =\dots \\&\quad =\underline{E}^{{\text {EI}}}_{1:m+1}{\left( \underline{E}^{{\text {EI}}}_{1:m+2}{\left( \dots \underline{E}^{{\text {EI}}}_{1:n-1}{\left( \underline{E}^{{\text {EI}}}_{1:n}{\left( f\vert X_{1:n-1}\right) }\vert X_{1:n-2}\right) } \dots \vert X_{1:m+1}\right) } \vert X_{1:m}\right) }. \end{aligned}$$

The result now follows because

$$\begin{aligned} \underline{E}^{{\text {EI}}}_{1:1}{\left( h\right) }&=\min {{\left\{ E^{p_{A,D}}_{1:1}(h):p_{A,D}\in \mathscr {T}^{{\text {EI}}}\right\} }}\\&=\min {{\left\{ \sum _{x_1\in \mathscr {X}}p(x_1)h(x_1):p_{X_1}\in \mathscr {Q}_1\right\} }} =\underline{Q}_1(h) \text { for all}\, h\in \mathscr {L}(\mathscr {X}), \end{aligned}$$

and because, for all \(i\in \mathbb {N}\):

$$\begin{aligned} \underline{E}^{{\text {EI}}}_{1:i+1}{\left( h\vert X_{1:i}\right) }&=\min {{\left\{ E^{p_{A,D}}_{1:i+1}(h\vert X_{1:i}):p_{A,D}\in \mathscr {T}^{{\text {EI}}}\right\} }}\\&=\min \bigg \{\sum _{x_{i+1}\in \mathscr {X}}{q{\left( x_{i+1}\vert X_{i},a_{X_{1:i}},d_{X_{1:i}}\right) }}h(X_{1:i},x_{i+1}):\\&\quad \quad \quad \quad (\forall x_{1:i}\in \mathscr {X}^i)\, a_{x_{1:i}} \in [\underline{a},\overline{a}], (\forall x_{1:i}\in \mathscr {X}^i)\, d_{x_{1:i}} \in [\underline{d},\overline{d}]\bigg \}\\&=\underline{Q}_{i+1}(h\vert X_{1:i}) \text { for all}\, h\in \mathscr {L}(\mathscr {X}^{i+1}). \end{aligned}$$

Proof of Theorem 2

We provide the proof for \(\underline{E}^{{\text {EI}}}_{n}{\left( h\right) }\); the proof for \(\overline{E}^{{\text {EI}}}_{n}{\left( h\right) }\) is completely analogous. It follows from Eqs. (16) and (18) and Theorem 1 that

$$\begin{aligned} \underline{E}^{{\text {EI}}}_{n}{\left( h\right) }=\underline{Q}_1\underline{Q}^{n-1}h. \end{aligned}$$

Therefore, the result follows—by induction—if, for any function \(h\in \mathscr {L}(\mathscr {X})\) that satisfies Eq. (17), we can show (a) that \(\underline{Q}h\) also satisfies Eq. (17) and (b) that, for all \(y\in \mathscr {X}\), the minimum in

$$\begin{aligned} \underline{Q}h(y) =\min {{\left\{ \sum _{x\in \mathscr {X}}{q{\left( x\vert y,a,d\right) }}h(x):a \in \{\underline{a},\overline{a}\}, d \in \{\underline{d},\overline{d}\}\right\} }} \end{aligned}$$
(19)

is obtained for \(a=\underline{a}\) and \(d=\overline{d}\).

For all \(y\in \{1,\dots ,L\}\), let \(m_y:= h(y)-h(y-1)\ge 0\), where the inequality follows from Eq. (17).

We first prove (b). For \(y=0\), Eqs. (1) and (19) imply that

$$\begin{aligned} \underline{Q}h(0)&=\min {{\left\{ (1-a)h(0)+ah(1):a\in \{\underline{a},\overline{a}\},d\in \{\underline{d},\overline{d}\}\right\} }}\nonumber \\&=\min {{\left\{ h(0)+am_1:a\in \{\underline{a},\overline{a}\},d\in \{\underline{d},\overline{d}\}\right\} }} =h(0)+\underline{a}m_1, \end{aligned}$$
(20)

where the last step holds because \(m_1\ge 0\). Similarly, for \(y \in \{1,\dots ,L-1\}\), Eqs. (2) and (19) imply that

$$\begin{aligned} \underline{Q}h(y)&=\min \big \{[d(1-a)]h(y-1)+[(1-d)(1-a)+da]h(y)\nonumber \\& +[(1-d)a]h(y+1) :a\in \{\underline{a},\overline{a}\}, d \in \{\underline{d},\overline{d}\}\big \}\nonumber \\&=\min {{\left\{ h(y)-d(1-a)m_y+(1-d)am_{y+1}:a\in \{\underline{a},\overline{a}\},d\in \{\underline{d},\overline{d}\}\right\} }}\nonumber \\&= h(y)-\overline{d}(1-\underline{a})m_y+(1-\overline{d})\underline{a}m_{y+1}, \end{aligned}$$
(21)

where the last step holds because \(m_y\ge 0\) and \(m_{y+1}\ge 0\).

Finally, for \(y=L\), Eqs. (3) and (19) imply that

$$\begin{aligned} \underline{Q}h(L)&=\min {{\left\{ [d(1-a)]h(L-1)+[1-d(1-a)]h(L):a\in \{\underline{a},\overline{a}\},d\in \{\underline{d},\overline{d}\}\right\} }}\nonumber \\&=\min {{\left\{ h(L)-d(1-a)m_L:a\in \{\underline{a},\overline{a}\},d\in \{\underline{d},\overline{d}\}\right\} }}= h(L)-\overline{d}(1-\underline{a})m_L, \end{aligned}$$
(22)

where the last step holds because \(m_L\ge 0\). This concludes the proof of (b).

We now prove (a): \(\underline{Q}h(y+1)-\underline{Q}h(y)\ge 0\) for all \(y\in \{0,\dots ,L-1\}\). For \(y=0\), this holds because it follows from Eqs. (20) and (21) that

$$\begin{aligned} \underline{Q}h(1)-\underline{Q}h(0)&= \left( h(1)-\overline{d}(1-\underline{a})m_1+(1-\overline{d})\underline{a}m_{2} \right) - \left( h(0)+\underline{a}m_1 \right) \\&= m_1-\overline{d}(1-\underline{a})m_1+(1-\overline{d})\underline{a}m_{2} -\underline{a}m_1\\&\ge m_1-\overline{d}(1-\underline{a})m_1 -\underline{a}m_1 =(1-\underline{a})(1-\overline{d})m_1\ge 0. \end{aligned}$$

For \(y\in \{1,\dots ,L-2\}\), this holds because it follows from Eq. (21) that

$$\begin{aligned}&\underline{Q}h(y+1)-\underline{Q}h(y)\\&\quad =\left( h(y+1)-\overline{d}(1-\underline{a})m_{y+1}+(1-\overline{d})\underline{a}m_{y+2} \right) \nonumber \\&\qquad - \left( h(y)-\overline{d}(1-\underline{a})m_y+(1-\overline{d})\underline{a}m_{y+1} \right) \\&\quad = m_{y+1}-\overline{d}(1-\underline{a})m_{y+1}+(1-\overline{d})\underline{a}m_{y+2} +\overline{d}(1-\underline{a})m_y-(1-\overline{d})\underline{a}m_{y+1}\\&\quad \ge m_{y+1}-\overline{d}(1-\underline{a})m_{y+1}-(1-\overline{d})\underline{a}m_{y+1}=(1-\underline{a})(1-\overline{d})m_{y+1}\ge 0. \end{aligned}$$

For \(y=L-1\), this holds because it follows from Eqs. (21) and (22) that

$$\begin{aligned} \underline{Q}h(L)-\underline{Q}h(L-1)&= \left( h(L)-\overline{d}(1-\underline{a})m_L\right) \\&\quad -\, \left( h(L-1)-\overline{d}(1-\underline{a})m_{L-1}+(1-\overline{d})\underline{a}m_{L} \right) \\&= m_L-\overline{d}(1-\underline{a})m_L +\overline{d}(1-\underline{a})m_{L-1}-(1-\overline{d})\underline{a}m_{L}\\&\ge m_L-\overline{d}(1-\underline{a})m_L -(1-\overline{d})\underline{a}m_{L}\\&=\left( (1-\overline{d})(1-\underline{a}) +\overline{d}\underline{a}\right) m_L \ge 0. \end{aligned}$$

Proof of Theorem 3

For all \(n\in \mathbb {N}\), it follows from subadditivity [27, Chap. 2.6.1(e)] that

$$\begin{aligned}&\underline{E}^{{\text {EI}}}_{1:n}{\left( \frac{1}{n}\sum _{i=1}^{n}{\mathbb {I}_{k}(X_{i})}\right) } \ge \frac{1}{n}\sum _{i=1}^{n}\underline{E}^{{\text {EI}}}_{1:n}{\left( {\mathbb {I}_{k}(X_{i})}\right) } =\frac{1}{n}\sum _{i=1}^{n}\underline{E}^{{\text {EI}}}_{i}{\left( {\mathbb {I}_{k}}\right) }, \end{aligned}$$

whence

$$\begin{aligned} \liminf _{n\rightarrow \infty }\underline{E}^{{\text {EI}}}_{1:n}{\left( \frac{1}{n}\sum _{i=1}^{n}{\mathbb {I}_{k}(X_{i})}\right) } \ge \liminf _{n\rightarrow \infty }\frac{1}{n}\sum _{i=1}^{n}\underline{E}^{{\text {EI}}}_{i}{\left( {\mathbb {I}_{k}}\right) } \ge \liminf _{n\rightarrow \infty }\underline{E}^{{\text {EI}}}_{n}{\left( {\mathbb {I}_{k}}\right) }, \end{aligned}$$

where the last inequality follows from the definition of the limit inferior. The proof for the upper expectations is completely analogous; the inequalities are reversed and subadditivity is replaced by superadditivity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopatatzidis, S., De Bock, J., de Cooman, G. et al. Robust queueing theory: an initial study using imprecise probabilities. Queueing Syst 82, 75–101 (2016). https://doi.org/10.1007/s11134-015-9458-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-015-9458-6

Keywords

Mathematics Subject Classification

Navigation