Skip to main content
Log in

Attractiveness of Brownian queues in tandem

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

Consider a sequence of n bi-infinite and stationary Brownian queues in tandem. Assume that the arrival process entering the first queue is a zero mean ergodic process. We prove that the departure process from the n-th queue converges in distribution to a Brownian motion as n goes to infinity. In particular this implies that the Brownian motion is an attractive invariant measure for the Brownian queueing operator. Our proof exploits the relationship between Brownian queues in tandem and the last-passage Brownian percolation model, developing a coupling technique in the second setting. The result is also interpreted in the related context of Brownian particles acting under one-sided reflection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baryshnikov, Y.: GUEs and queues. Probab. Theory Relat. Fields 119, 256–274 (2001)

    Article  Google Scholar 

  2. Cator, E.A., Groeneboom, P.: Second class particles and cube root asymptotics for Hammersley’s process. Ann. Probab. 34, 1273–1295 (2006)

    Article  Google Scholar 

  3. Cator, E.A., Pimentel, L.P.R.: Busemman functions and equilibrium measures in last-passage percolation models. Prob. Theory Relat. Fields. 154, 89–125 (2012)

    Article  Google Scholar 

  4. Ferrari, P.A.: Shocks in the Burgers equation and the asymmetric simple exclusion process. In: Goles, E., Martínez, S. (eds.) Statistical Physics, Automata Networks and Dynamical Systems. Mathematics and its Applications, vol. 75, pp. 25–64. Springer, Dordrecht (1992)

    Google Scholar 

  5. Ferrari, P.L., Spohn, H., Weiss, T.: Scaling limit for Brownian with one-sided collisions. Ann. Appl. Probab. 25, 1349–1382 (2015)

    Article  Google Scholar 

  6. Ferrari, P.L., Spohn, H., Weiss, T.: Brownian motions with one-sided collisions: the stationary case. Eletron. J. Probab. 69, 1–41 (2015)

    Google Scholar 

  7. Georgiou, N., Rassoul-Agha, F., Seppäläinen, T.: Geodesics and the competition interface for the corner growth model. Probab. Theory Relat. Fields 169, 223–255 (2015)

    Article  Google Scholar 

  8. Georgiou, N., Rassoul-Agha, F., Seppäläinen, T.: Stationary cocycles and Busemann functions for the corner growth model. Probab. Theory Relat. Fields 169, 177–222 (2015)

    Article  Google Scholar 

  9. Glynn, P.W., Whitt, W.: Departures from many queues in series. Ann. Appl. Probab. 1, 546–572 (1991)

    Article  Google Scholar 

  10. Gravner, W.J., Tracy, C.A., Widom, H.: Limit theorems for height fluctuations in a class of discrete space and time growth models. J. Stat. Phys. 102(5–6), 1085–1132 (2001)

    Article  Google Scholar 

  11. Hambly, B.M., Martin, J.B., O’Connell, N.: Concentration results for a Brownian directed percolation problem. Stoch. Process. Appl. 102, 207–220 (2002)

    Article  Google Scholar 

  12. Harrison, M., Williams, R.: On the quasireversibility of a multiclass Brownian service station. Ann. Probab. 18, 1249–1268 (1990)

    Article  Google Scholar 

  13. Ichiba, T., Karatzas, I.: On collisions of Brownian particles. Ann. Appl. Probab 20, 951–977 (2012)

    Article  Google Scholar 

  14. Karatzas, I., Pal, S., Shkolnikov, M.: Systems of Brownian particles with asymmetric collisions. Ann. Inst. H. Poincaré Probab. Stat. 52(1), 323–354 (2016)

    Article  Google Scholar 

  15. López, S.I.: Convergence of tandem Brownian queues. J. Appl. Probab. 53(2), 585–592 (2016)

    Article  Google Scholar 

  16. López, S.I., Pimentel, L.P.R.: On the location of the maximum of a process: lévy, Gaussian and multidimensional cases. Stochastics 90(8), 1221–1237 (2018)

    Article  Google Scholar 

  17. Loynes, R.M.: The stability of a queue with non-independent interarrival and service times. Proc. Camb. Philos. Soc. 58, 497–520 (1962)

    Article  Google Scholar 

  18. Mairesse, J., Prabhakar, B.: The existence of fixed points for the \(\cdot /GI/1\) queue. Ann. Probab. 31, 2216–2236 (2003)

    Article  Google Scholar 

  19. Martin, J.B.: Last passage percolation with general weight distribution. Markov Proc. Relat. Fields. 12, 273–299 (2006)

    Google Scholar 

  20. Mountford, T., Prabhakar, B.: On the weak convergence of departures from an infinite series of \(\cdot /M/ 1\) queues. Ann. Appl. Probab. 5(1), 121–127 (1995)

    Article  Google Scholar 

  21. O’Connell, N., Yor, M.: Brownian analogues of Burke’s theorem. Stoch. Process. Appl. 2, 285–304 (2001)

    Article  Google Scholar 

  22. Pal, S., Pitman, J.: One-dimensional Brownian particle systems with rank-dependent drifts. Ann. Appl. Prob. 18, 2179–2207 (2008)

    Article  Google Scholar 

  23. Prabhakar, B.: The attractiveness of the fixed points of a \(\cdot /GI/1\) queue. Ann. Probab 31, 2237–2269 (2003)

    Article  Google Scholar 

  24. Seppäläinen, T.: A scaling limit for queues in series. Ann. Appl. Probab. 7, 855–872 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank an anonymous referee for her helpful comments that greatly improved the presentation and clarity of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio I. López.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cator, E.A., López, S.I. & Pimentel, L.P.R. Attractiveness of Brownian queues in tandem. Queueing Syst 92, 25–45 (2019). https://doi.org/10.1007/s11134-019-09609-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-019-09609-y

Keywords

Mathematics Subject Classification

Navigation