Skip to main content

Advertisement

Log in

Central leptin and ghrelin signalling: Comparing and contrasting their mechanisms of action in the brain

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

In the past two decades, two major discoveries have greatly contributed to our current knowledge on the central control of food intake and body-weight; the discovery of the anorexigenic adipocyte derived hormone leptin in 1994 and the orexigenic gut derived hormone ghrelin in 1999. Both hormones act as crucial signals to indicate nutritional status as well as to modulate feeding behaviour through a variety of distinct pathways. They target overlapping CNS regions in order to mediate their obvious opposing effects on energy balance. Here we depict the integral picture of leptin and ghrelin on central regulation of food intake by reviewing their actions across the CNS, in regions of the hypothalamus, brainstem, mesolimbic reward pathway and other higher brain areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zhang YY, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homolog. Nature. 1994;372:425–32.

    Article  PubMed  CAS  Google Scholar 

  2. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402:656–60.

    Article  PubMed  CAS  Google Scholar 

  3. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, et al. Serum immunoreactive leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996;334:292–5.

    Article  PubMed  CAS  Google Scholar 

  4. Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998;395:763–70.

    Article  PubMed  CAS  Google Scholar 

  5. Ahima RS, Prabakaran D, Mantzoros C, Qu D, Lowell B, Maratos-Flier E, et al. Role of leptin in the neuroendocrine response to fasting. Nature. 1996;382:250–2.

    Article  PubMed  CAS  Google Scholar 

  6. Tschop M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature. 2000;407:908–13.

    Article  PubMed  CAS  Google Scholar 

  7. Gutierrez JA, Solenberg PJ, Perkins DR, Willency JA, Knierman MD, Jin Z, et al. Ghrelin octanoylation mediated by an orphan lipid transferase. Proc Natl Acad Sci USA. 2008;105:6320–5.

    Article  PubMed  CAS  Google Scholar 

  8. Yang J, Brown MS, Liang G, Grishin NV, Goldstein JL. Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell. 2008;132:387–96.

    Article  PubMed  CAS  Google Scholar 

  9. Tschop M, Weyer C, Tataranni PA, Devanarayan V, Ravussin E, Heiman ML. Circulating Ghrelin levels are decreased in human obesity. Diabetes. 2001;50:707–9.

    Article  PubMed  CAS  Google Scholar 

  10. Cummings DE, Clement K, Purnell JQ, Vaisse C, Foster KE, Frayo RS, et al. Elevated plasma ghrelin levels in Prader-Willi syndrome. Nat Med. 2002;8:643–4.

    Article  PubMed  CAS  Google Scholar 

  11. Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes. 2001;50:1714–9.

    Article  PubMed  CAS  Google Scholar 

  12. Tschop M, Wawarta R, Riepl RL, Friedrich S, Bidlingmaier M, Landgraf R, et al. Post-prandial decrease of circulating human ghrelin levels. J Endocrinol Investig. 2001;24:Rc19–21.

    CAS  Google Scholar 

  13. Kirchner H, Gutierrez JA, Solenberg PJ, Pfluger PT, Czyzyk TA, Willency JA, et al. GOAT links dietary lipids with the endocrine control of energy balance. Nat Med. 2009;15:741–5.

    Article  PubMed  CAS  Google Scholar 

  14. Wren AM, Small CJ, Ward HL, Murphy KG, Dakin CL, Taheri S, et al. The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology. 2000;141:4325–8.

    Article  PubMed  CAS  Google Scholar 

  15. Ashby DR, Ford HE, Wynne KJ, Wren AM, Murphy KG, Busbridge M, et al. Sustained appetite improvement in malnourished dialysis patients by daily ghrelin treatment. Kidney Int. 2009;76:199–206.

    Article  PubMed  CAS  Google Scholar 

  16. Druce MR, Neary NM, Small CJ, Milton J, Monteiro M, Patterson M, et al. Subcutaneous administration of ghrelin stimulates energy intake in healthy lean human volunteers. Int J Obes. 2006;30:293–6.

    Article  CAS  Google Scholar 

  17. Druce MR, Wren AM, Park AJ, Milton JE, Patterson M, Frost G, et al. Ghrelin increases food intake in obese as well as lean subjects. Int J Obes. 2005;29:1130–6.

    Article  CAS  Google Scholar 

  18. Neary NM, Small CJ, Wren AM, Lee JL, Druce MR, Palmieri C, et al. Ghrelin increases energy intake in cancer patients with impaired appetite: acute, randomized, placebo-controlled trial. J Clin Endocrinol Metab. 2004;89:2832–6.

    Article  PubMed  CAS  Google Scholar 

  19. Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R, et al. Identification and expression cloning of a leptin receptor, OB-R. Cell. 1995;83:1263–71.

    Article  PubMed  CAS  Google Scholar 

  20. Fei H, Okano HJ, Li C, Lee GH, Zhao C, Darnell R, et al. Anatomic localization of alternatively spliced leptin receptors (Ob-R) in mouse brain and other tissues. Proc Natl Acad Sci USA. 1997;94:7001–5.

    Article  PubMed  CAS  Google Scholar 

  21. Bates SH, Stearns WH, Dundon TA, Schubert M, Tso AWK, Wang YP, et al. STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature. 2003;421:856–9.

    Article  PubMed  CAS  Google Scholar 

  22. Bjorbaek C, Uotani S, da Silva B, Flier JS. Divergent signaling capacities of the long and short isoforms of the leptin receptor. J Biol Chem. 1997;272:32686–95.

    Article  PubMed  CAS  Google Scholar 

  23. Niswender KD, Morton GJ, Stearns WH, Rhodes CJ, Myers MG, Schwartz MW. Intracellular signalling—key enzyme in leptin-induced anorexia. Nature. 2001;413:794–5.

    Article  PubMed  CAS  Google Scholar 

  24. Depoortere I. Targeting the ghrelin receptor to regulate food intake. Regul Pept. 2009;156:13–23.

    Article  PubMed  CAS  Google Scholar 

  25. Howard AD, Feighner SD, Cully DF, Arena JP, Liberator PA, Rosenblum CI, et al. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science. 1996;273:974–7.

    Article  PubMed  CAS  Google Scholar 

  26. Lopez M, Lage R, Saha AK, Perez-Tilve D, Vazquez MJ, Varela L, et al. Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. Cell Metab. 2008;7:389–99.

    Article  PubMed  CAS  Google Scholar 

  27. Cone RD. Anatomy and regulation of the central melanocortin system. Nat Neurosci. 2005;8:571–8.

    Article  PubMed  CAS  Google Scholar 

  28. Oswal A, Yeo GSH. Appetite regulatory peptides—the leptin melanocortin pathway and the control of body weight: lessons from human and murine genetics. Obes Rev. 2007;8:293–306.

    Article  PubMed  CAS  Google Scholar 

  29. Bertagna X. Proopiomelanocortin-derived peptides. Endocrinol Metab Clin North Am. 1994;23:467–85.

    PubMed  CAS  Google Scholar 

  30. Castro MG, Morrison E. Post-translational processing of proopiomelanocortin in the pituitary and in the brain. Crit Rev Neurobiol. 1997;11:35–57.

    PubMed  CAS  Google Scholar 

  31. Challis BG, Coll AP, Yeo GS, Pinnock SB, Dickson SL, Thresher RR, et al. Mice lacking pro-opiomelanocortin are sensitive to high-fat feeding but respond normally to the acute anorectic effects of peptide-YY(3-36). Proc Natl Acad Sci USA. 2004;101:4695–700.

    Article  PubMed  CAS  Google Scholar 

  32. Krude H, Biebermann H, Luck W, Horn R, Brabant G, Gruters A. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet. 1998;19:155–7.

    Article  PubMed  CAS  Google Scholar 

  33. Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LR, et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell. 1997;88:131–41.

    Article  PubMed  CAS  Google Scholar 

  34. Vaisse C, Clement K, Guy-Grand B, Froguel P. A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat Genet. 1998;20:113–4.

    Article  PubMed  CAS  Google Scholar 

  35. Yeo GS, Farooqi IS, Aminian S, Halsall DJ, Stanhope RG, O’Rahilly S. A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat Genet. 1998;20:111–2.

    Article  PubMed  CAS  Google Scholar 

  36. Farooqi IS, Keogh JM, Yeo GS, Lank EJ, Cheetham T, O’Rahilly S. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med. 2003;348:1085–95.

    Article  PubMed  CAS  Google Scholar 

  37. Bewick GA, Gardiner JV, Dhillo WS, Kent AS, White NE, Webster Z, et al. Post-embryonic ablation of AgRP neurons in mice leads to a lean, hypophagic phenotype. FASEB J. 2005;19:1680–2.

    PubMed  CAS  Google Scholar 

  38. Gropp E, Shanabrough M, Borok E, Xu AW, Janoschek R, Buch T, et al. Agouti-related peptide-expressing neurons are mandatory for feeding. Nat Neurosci. 2005;8:1289–91.

    Article  PubMed  CAS  Google Scholar 

  39. Luquet S, Perez FA, Hnasko TS, Palmiter RD. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science. 2005;310:683–5.

    Article  PubMed  CAS  Google Scholar 

  40. Xu AW, Kaelin CB, Morton GJ, Ogimoto K, Stanhope K, Graham J, et al. Effects of hypothalamic neurodegeneration on energy balance. PLoS Biol. 2005;3:e415.

    Article  PubMed  CAS  Google Scholar 

  41. Cowley MA, Smart JL, Rubinstein M, Cordan MG, Diano S, Horvath TL, et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature. 2001;411:480–4.

    Article  PubMed  CAS  Google Scholar 

  42. Kishi T, Aschkenasi CJ, Lee CE, Mountjoy KG, Saper CB, Elmquist JK. Expression of melanocortin 4 receptor mRNA in the central nervous system of the rat. J Comp Neurol. 2003;457:213–35.

    Article  PubMed  CAS  Google Scholar 

  43. Liu HY, Kishi T, Roseberry AG, Cai XL, Lee CE, Montez JM, et al. Transgenic mice expressing green fluorescent protein under the control of the melanocortin-4 receptor promoter. J Neurosci. 2003;23:7143–54.

    PubMed  CAS  Google Scholar 

  44. Cheung CC, Clifton DK, Steiner RA. Proopiomelanocortin neurons are direct targets for leptin in the hypothalamus. Endocrinology. 1997;138:4489–92.

    Article  PubMed  CAS  Google Scholar 

  45. Wilson BD, Bagnol D, Kaelin CB, Ollmann MM, Gantz I, Watson SJ, et al. Physiological and anatomical circuitry between Agouti-related protein and leptin signaling. Endocrinology. 1999;140:2387–97.

    Article  PubMed  CAS  Google Scholar 

  46. Guan XM, Yu H, Palyha OC, McKee KK, Feighner SD, Sirinathsinghji DJS, et al. Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Mol Brain Res. 1997;48:23–9.

    Article  PubMed  CAS  Google Scholar 

  47. Tamura H, Kamegai J, Shimizu T, Ishii S, Sugihara H, Oikawa S. Ghrelin stimulates GH but not food intake in arcuate nucleus ablated rats. Endocrinology. 2002;143:3268–75.

    Article  PubMed  CAS  Google Scholar 

  48. Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, et al. A role for ghrelin in the central regulation of feeding. Nature. 2001;409:194–8.

    Article  PubMed  CAS  Google Scholar 

  49. Shintani M, Ogawa Y, Ebihara K, Aizawa-Abe M, Miyanaga F, Takaya K, et al. Ghrelin, an endogenous growth hormone secretagogue, is a novel orexigenic peptide that antagonizes leptin action through the activation of hypothalamic neuropeptide Y/Y1 receptor pathway. Diabetes. 2001;50:227–32.

    Article  PubMed  CAS  Google Scholar 

  50. Chen HY, Trumbauer ME, Chen AS, Weingarth DT, Adams JR, Frazier EG, et al. Orexigenic action of peripheral ghrelin is mediated by neuropeptide Y and agouti-related protein. Endocrinology. 2004;145:2607–12.

    Article  PubMed  CAS  Google Scholar 

  51. Brown LM, Benoit SC, Woods SC, Clegg DJ. Intraventricular (i3vt) ghrelin increases food intake in fatty Zucker rats. Peptides. 2007;28:612–6.

    Article  PubMed  CAS  Google Scholar 

  52. Elias CF, Aschkenasi C, Lee C, Kelly J, Ahima RS, Bjorbaek C, et al. Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron. 1999;23:775–86.

    Article  PubMed  CAS  Google Scholar 

  53. Ahima RS, Kelly J, Elmquist JK, Flier JS. Distinct physiologic and neuronal responses to decreased leptin and mild hyperleptinemia. Endocrinology. 1999;140:4923–31.

    Article  PubMed  CAS  Google Scholar 

  54. Schwartz MW, Seeley RJ, Woods SC, Weigle DS, Campfield LA, Burn P, et al. Leptin increases hypothalamic pro-opiomelanocortin mRNA expression in the rostral arcuate nucleus. Diabetes. 1997;46:2119–23.

    Article  PubMed  CAS  Google Scholar 

  55. Kamegai J, Tamura H, Shimizu T, Ishii S, Sugihara H, Wakabayashi I. Central effect of ghrelin, an endogenous growth hormone secretagogue, on hypothalamic peptide gene expression. Endocrinology. 2000;141:4797–800.

    Article  PubMed  CAS  Google Scholar 

  56. Goto M, Arima H, Watanabe M, Hayashi M, Banno R, Sato I, et al. Ghrelin increases neuropeptide Y and agouti-related peptide gene expression in the arcuate nucleus in rat hypothalamic organotypic cultures. Endocrinology. 2006;147:5102–9.

    Article  PubMed  CAS  Google Scholar 

  57. Cowley MA, Smith RG, Diano S, Tschop M, Pronchuk N, Grove KL, et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron. 2003;37:649–61.

    Article  PubMed  CAS  Google Scholar 

  58. Wang JH, Wang F, Yang MJ, Yu DF, Wu WN, Liu J, et al. Leptin regulated calcium channels of neuropeptide Y and proopiomelanocortin neurons by activation of different signal pathways. Neuroscience. 2008;156:89–98.

    Article  PubMed  CAS  Google Scholar 

  59. Plum L, Ma XS, Hampel B, Balthasar N, Coppari R, Munzberg H, et al. Enhanced PIP3 signaling in POMC neurons causes K-ATP channel activation and leads to diet-sensitive obesity. J Clin Investig. 2006;116:1886–901.

    Article  PubMed  CAS  Google Scholar 

  60. van den Top M, Lee K, Whyment AD, Blanks AM, Spanswick D. Orexigen-sensitive NPY/AgRP pacemaker neurons in the hypothalamic arcuate nucleus. Nat Neurosci. 2004;7:493–4.

    Article  PubMed  CAS  Google Scholar 

  61. Pinto S, Roseberry AG, Liu HY, Diano S, Shanabrough M, Cai XL, et al. Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science. 2004;304:110–5.

    Article  PubMed  CAS  Google Scholar 

  62. Abizaid A, Liu ZW, Andrews ZB, Shanabrough M, Borok E, Elsworth JD, et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest. 2006;116:3229–39.

    Article  PubMed  CAS  Google Scholar 

  63. Balthasar N, Dalgaard LT, Lee CE, Yu J, Funahashi H, Williams T, et al. Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell. 2005;123:493–505.

    Article  PubMed  CAS  Google Scholar 

  64. Mercer JG, Hoggard N, Williams LM, Lawrence CB, Hannah LT, Trayhurn P. Localization of leptin receptor mRNA and the long form splice variant (Ob-Rb) in mouse hypothalamus and adjacent brain regions by in situ hybridization. FEBS Lett. 1996;387:113–6.

    Article  PubMed  CAS  Google Scholar 

  65. Qi Y, Henry BA, Oldfield BJ, Clarke IJ. The action of leptin on appetite-regulating cells in the ovine hypothalamus: demonstration of direct action in the absence of the arcuate nucleus. Endocrinology. 2010;151:2106–16.

    Article  PubMed  Google Scholar 

  66. Olszewski PK, Grace MK, Billington CJ, Levine AS. Hypothalamic paraventricular injections of ghrelin: effect on feeding and c-Fos immunoreactivity. Peptides. 2003;24:919–23.

    Article  PubMed  CAS  Google Scholar 

  67. Wren AM, Small CJ, Abbott CR, Dhillo WS, Seal LJ, Cohen MA, et al. Ghrelin causes hyperphagia and obesity in rats. Diabetes. 2001;50:2540–7.

    Article  PubMed  CAS  Google Scholar 

  68. Tung YCL, Ma M, Piper S, Coll A, O’Rahilly S, Yeo GSH. Novel leptin-regulated genes revealed by transcriptional profiling of the hypothalamic paraventricular nucleus. J Neurosci. 2008;28:12419–26.

    Article  PubMed  CAS  Google Scholar 

  69. Piper M, Holt C. RNA translation in axons. Annu Rev Cell Dev Biol. 2004;20:505–23.

    Article  PubMed  CAS  Google Scholar 

  70. Elias CF, Kelly JF, Lee CE, Ahima RS, Drucker DJ, Saper CB, et al. Chemical characterization of leptin-activated neurons in the rat brain. J Comp Neurol. 2000;423:261–81.

    Article  PubMed  CAS  Google Scholar 

  71. Munzberg H, Huo LH, Nillni EA, Hollenberg AN, Bjorbaek C. Role of signal transducer and activator of transcription 3 in regulation of hypothalamic proopiomelanocortin gene expression by leptin. Endocrinology. 2003;144:2121–31.

    Article  PubMed  CAS  Google Scholar 

  72. Dhillon H, Zigman JM, Ye CP, Lee CE, McGovern RA, Tang VS, et al. Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron. 2006;49:191–203.

    Article  PubMed  CAS  Google Scholar 

  73. Bingham NC, Anderson KK, Reuter AL, Stallings NR, Parker KL. Selective loss of leptin receptors in the ventromedial hypothalamic nucleus results in increased adiposity and a metabolic syndrome. Endocrinology. 2008;149:2138–48.

    Article  PubMed  CAS  Google Scholar 

  74. Zhang R, Dhillon H, Yin H, Yoshimura A, Lowell BB, Maratos-Flier E, et al. Selective inactivation of Socs3 in SF1 neurons improves glucose homeostasis without affecting body weight. Endocrinology. 2008;149:5654–61.

    Article  PubMed  CAS  Google Scholar 

  75. Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK. Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol. 2006;494:528–48.

    Article  PubMed  CAS  Google Scholar 

  76. Lawrence CB, Snape AC, Baudoin FMH, Luckman SM. Acute central ghrelin and GH secretagogues induce feeding and activate brain appetite centers. Endocrinology. 2002;143:155–62.

    Article  PubMed  CAS  Google Scholar 

  77. Kim MS, Yoon CY, Park KH, Shin CS, Park KS, Kim SY, et al. Changes in ghrelin and ghrelin receptor expression according to feeding status. NeuroReport. 2003;14:1317–20.

    PubMed  CAS  Google Scholar 

  78. Nogueiras R, Tovar S, Mitchell SE, Rayner DV, Archer ZA, Dieguez C, et al. Regulation of growth hormone secretagogue receptor gene expression in the arcuate nuclei of the rat by leptin and ghrelin. Diabetes. 2004;53:2552–8.

    Article  PubMed  CAS  Google Scholar 

  79. Broberger C, De Lecea L, Sutcliffe JG, Hokfelt T. Hypocretin/orexin- and melanin-concentrating hormone-expressing cells form distinct populations in the rodent lateral hypothalamus: relationship to the neuropeptide Y and Agouti gene-related protein systems. J Comp Neurol. 1998;402:460–74.

    Article  PubMed  CAS  Google Scholar 

  80. Horvath TL, Diano S, van den Pol AN. Synaptic interaction between hypocretin (Orexin) and neuropeptide Y cells in the rodent and primate hypothalamus: a novel circuit implicated in metabolic and endocrine regulations. J Neurosci. 1999;19:1072–87.

    PubMed  CAS  Google Scholar 

  81. Hakansson ML, Brown H, Ghilardi N, Skoda RC, Meister B. Leptin receptor immunoreactivity in chemically defined target neurons of the hypothalamus. J Neurosci. 1998;18:559–72.

    PubMed  CAS  Google Scholar 

  82. Hakansson ML, de Lecea L, Sutcliffe JG, Yanagisawa M, Meister B. Leptin receptor- and STAT3-immunoreactivities in hypocretin/orexin neurones of the lateral hypothalamus. J Neuroendocrinol. 1999;11:653–63.

    Article  PubMed  CAS  Google Scholar 

  83. Horvath TL, Gao XB. Input organization and plasticity of hypocretin neurons: possible clues to obesity’s association with insomnia. Cell Metab. 2005;1:279–86.

    Article  PubMed  CAS  Google Scholar 

  84. Toshinai K, Date Y, Murakami N, Shimada M, Mondal MS, Shimbara T, et al. Ghrelin-induced food intake is mediated via the orexin pathway. Endocrinology. 2003;144:1506–12.

    Article  PubMed  CAS  Google Scholar 

  85. Alon T, Friedman JM. Late-onset leanness in mice with targeted ablation of melanin concentrating hormone neurons. J Neurosci. 2006;26:389–97.

    Article  PubMed  CAS  Google Scholar 

  86. Shimada M, Tritos NA, Lowell BB, Flier JS, Maratos-Flier E. Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature. 1998;396:670–4.

    Article  PubMed  CAS  Google Scholar 

  87. Ludwig DS, Tritos NA, Mastaitis JW, Kulkarni R, Kokkotou E, Elmquist J, et al. Melanin-concentrating hormone overexpression in transgenic mice leads to obesity and insulin resistance. J Clin Investig. 2001;107:379–86.

    Article  PubMed  CAS  Google Scholar 

  88. Qu DQ, Ludwig DS, Gammeltoft S, Piper M, Pelleymounter MA, Cullen MJ, et al. A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature. 1996;380:243–7.

    Article  PubMed  CAS  Google Scholar 

  89. Rossi M, Choi SJ, OShea D, Miyoshi T, Ghatei MA, Bloom SR. Melanin-concentrating hormone acutely stimulates feeding, but chronic administration has no effect on body weight. Endocrinology. 1997;138:351–5.

    Article  PubMed  CAS  Google Scholar 

  90. Stricker-Krongrad A, Dimitrov T, Beck B. Central and peripheral dysregulation of melanin-concentrating hormone in obese Zucker rats. Mol Brain Res. 2001;92:43–8.

    Article  PubMed  CAS  Google Scholar 

  91. Sahu A. Leptin decreases food intake induced by melanin-concentrating hormone (MCH), galanin (GAL) and neuropeptide Y (NPY) in the rat. Endocrinology. 1998;139:4739–42.

    Article  PubMed  CAS  Google Scholar 

  92. Grill HJ. Distributed neural control of energy balance: contributions from hindbrain and hypothalamus. Obesity. 2006;14:216–21.

    Article  Google Scholar 

  93. Grill HJ, Schwartz MW, Kaplan JM, Foxhall JS, Breininger J, Baskin DG. Evidence that the caudal brainstem is a target for the inhibitory effect of leptin on food intake. Endocrinology. 2002;143:239–46.

    Article  PubMed  CAS  Google Scholar 

  94. Mercer JG, Moar KM, Findlay PA, Hoggard N, Adam CL. Association of leptin receptor (OB-Rb), NPY and GLP-1 gene expression in the ovine and murine brainstem. Regul Pept. 1998;75–6:271–8.

    Article  Google Scholar 

  95. Williams DL, Baskin DG, Schwartz MW. Hindbrain leptin receptor stimulation enhances the anorexic response to cholecystokinin. Am J Physiol Regul Integr Comp Physiol. 2009;297:R1238–46.

    Article  PubMed  CAS  Google Scholar 

  96. Barrachina MD, Martinez V, Wang LX, Wei JY, Tache Y. Synergistic interaction between leptin and cholecystokinin to reduce short-term food intake in lean mice. Proc Natl Acad Sci USA. 1997;94:10455–60.

    Article  PubMed  CAS  Google Scholar 

  97. Emond M, Schwartz GJ, Ladenheim EE, Moran TH. Central leptin modulates behavioral and neural responsivity to CCK. Am J Physiol Regul Integr Comp Physiol. 1999;276:R1545–9.

    CAS  Google Scholar 

  98. McMinn JE, Sindelar DK, Havel PJ, Schwartz MW. Leptin deficiency induced by fasting impairs the satiety response to cholecystokinin. Endocrinology. 2000;141:4442–8.

    Article  PubMed  CAS  Google Scholar 

  99. Morton GJ, Blevins JE, Williams DL, Niswender KD, Gelling RW, Rhodes CJ, et al. Leptin action in the forebrain regulates the hindbrain response to satiety signals. J Clin Investig. 2005;115:703–10.

    PubMed  CAS  Google Scholar 

  100. Date Y, Toshinai K, Koda S, Miyazato M, Shimbara T, Tsuruta T, et al. Peripheral interaction of ghrelin with cholecystokinin on feeding regulation. Endocrinology. 2005;146:3518–25.

    Article  PubMed  CAS  Google Scholar 

  101. Chelikani PK, Haver AC, Reidelberger RD. Ghrelin attenuates the inhibitory effects of glucagon-like peptide-1 and peptide YY(3-36) on food intake and gastric emptying in rats. Diabetes. 2006;55:3038–46.

    Article  PubMed  CAS  Google Scholar 

  102. Unniappan S, Kieffer TJ. Leptin extends the anorectic effects of chronic PYY(3-36) administration in ad libitum-fed rats. Am J Physiol Regul Integr Comp Physiol. 2008;295:R51–8.

    Article  PubMed  CAS  Google Scholar 

  103. Williams DL, Baskin DG, Schwartz MW. Leptin regulation of the anorexic response to glucagon-like peptide-1 receptor stimulation. Diabetes. 2006;55:3387–93.

    Article  PubMed  CAS  Google Scholar 

  104. Hosoi T, Kawagishi T, Okuma Y, Tanaka J, Nomura Y. Brain stem is a direct target for leptin’s action in the central nervous system. Endocrinology. 2002;143:3498–504.

    Article  PubMed  CAS  Google Scholar 

  105. Ellacott KL, Halatchev IG, Cone RD. Characterization of leptin-responsive neurons in the caudal brainstem. Endocrinology. 2006;147:3190–5.

    Article  PubMed  CAS  Google Scholar 

  106. Huo LH, Grill HJ, Bjorbaek C. Divergent regulation of proopiomelanocortin neurons by leptin in the nucleus of the solitary tract and in the arcuate hypothalamic nucleus. Diabetes. 2006;55:567–73.

    Article  PubMed  CAS  Google Scholar 

  107. Faulconbridge LF, Grill HJ, Kaplan JM, Daniels D. Caudal brainstem delivery of ghrelin induces fos expression in the-nucleus of the solitary tract, but not in the arcuate or paraventricular nuclei of the hypothalamus. Brain Res. 2008;1218:151–7.

    Article  PubMed  CAS  Google Scholar 

  108. Berridge KC. The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology. 2007;191:391–431.

    Article  PubMed  CAS  Google Scholar 

  109. Schultz W. Behavioral dopamine signals. Trends Neurosci. 2007;30:203–10.

    Article  PubMed  CAS  Google Scholar 

  110. Wise RA. Dopamine, learning and motivation. Nat Rev Neurosci. 2004;5:483–94.

    Article  PubMed  CAS  Google Scholar 

  111. Wise RA. Role of brain dopamine in food reward and reinforcement. Philos Trans R Soc Lond B Biol Sci. 2006;361:1149–58.

    Article  PubMed  CAS  Google Scholar 

  112. Wise RA, Spindler J, Dewit H, Gerber GJ. Neuroleptic-induced anhedonia in rats—pimozide blocks reward quality of food. Science. 1978;201:262–4.

    Article  PubMed  CAS  Google Scholar 

  113. Farooqi IS, Bullmore E, Keogh J, Gillard J, O’Rahilly S, Fletcher PC. Leptin regulates striatal regions and human eating. Behav Sci. 2007;317:1355–5.

    CAS  Google Scholar 

  114. Malik S, McGlone F, Bedrossian D, Dagher A. Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab. 2008;7:400–9.

    Article  PubMed  CAS  Google Scholar 

  115. Figlewicz DP, Evans SB, Murphy J, Hoen M, Baskin DG. Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. Brain Res. 2003;964:107–15.

    Article  PubMed  CAS  Google Scholar 

  116. Hommel JD, Trinko R, Sears RM, Georgescu D, Liu ZW, Gao XB, et al. Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron. 2006;51:801–10.

    Article  PubMed  CAS  Google Scholar 

  117. Jiang H, Betancourt L, Smith RG. Ghrelin amplifies dopamine signaling by cross talk involving formation of growth hormone secretagogue receptor/dopamine receptor subtype 1 heterodimers. Mol Endocrinol. 2006;20:1772–85.

    Article  PubMed  CAS  Google Scholar 

  118. Jerlhag E, Egecioglu E, Dickson SL, Douhan A, Svensson L, Engel JA. Ghrelin administration into tegmental areas stimulates locomotor activity and increases extracellular concentration of dopamine in the nucleus accumbens. Addict Biol. 2007;12:6–16.

    Article  PubMed  CAS  Google Scholar 

  119. Naleid AM, Grace MK, Cummings DE, Levine AS. Ghrelin induces feeding in the mesolimbic reward pathway between the ventral tegmental area and the nucleus accumbens. Peptides. 2005;26:2274–9.

    Article  PubMed  CAS  Google Scholar 

  120. Kim KS, Yoon YR, Lee HJ, Yoon S, Kim SY, Shin SW, et al. Enhanced hypothalamic leptin signaling in mice lacking dopamine D-2 receptors. J Biol Chem. 2010;285:8905–17.

    Article  PubMed  CAS  Google Scholar 

  121. Krugel U, Schraft T, Kittner H, Kiess W, Illes P. Basal and feeding-evoked dopamine release in the rat nucleus accumbens is depressed by leptin. Eur J Pharmacol. 2003;482:185–7.

    Article  PubMed  CAS  Google Scholar 

  122. Perry ML, Leinninger GM, Chen R, Luderman KD, Yang H, Gnegy ME, et al. Leptin promotes dopamine transporter and tyrosine hydroxylase activity in the nucleus accumbens of Sprague-Dawley rats. J Neurochem. 2010.

  123. Jerlhag E, Egecioglu E, Dickson SL, Andersson M, Svensson L, Engel JA. Ghrelin stimulates locomotor activity and accumbal dopamine-overflow via central cholinergic systems in mice: implications for its involvement in brain reward. Addict Biol. 2006;11:45–54.

    Article  PubMed  CAS  Google Scholar 

  124. Di Chiara G, Bassareo V. Reward system and addiction: what dopamine does and doesn’t do (vol 7, pg 69, 2007). Curr Opin Pharmacol. 2007;7:233–3.

    Article  CAS  Google Scholar 

  125. Volkow ND, Fowler JS, Wang GJ. Role of dopamine in drug reinforcement and addiction in humans: results from imaging studies. Behav Pharmacol. 2002;13:355–66.

    Article  PubMed  CAS  Google Scholar 

  126. Davis C, Carter JC. Compulsive overeating as an addiction disorder. A review of theory and evidence. Appetite. 2009;53:1–8.

    Article  PubMed  Google Scholar 

  127. Fadel J, Deutch AY. Anatomical substrates of orexin-dopamine interactions: Lateral hypothalamic projections to the ventral tegmental area. Neuroscience. 2002;111:379–87.

    Article  PubMed  CAS  Google Scholar 

  128. Mogenson GJ, Swanson LW, Wu M. Neural projections from nucleus accumbens to globus pallidus, substantia innominata, and lateral preoptic-lateral hypothalamic area—an anatomical and electro-physiological investigation in the rat. J Neurosci. 1983;3:189–202.

    PubMed  CAS  Google Scholar 

  129. DiLeone RJ, Georgescu D, Nestler EJ. Lateral hypothalamic neuropeptides in reward and drug addiction. Life Sci. 2003;73:759–68.

    Article  PubMed  CAS  Google Scholar 

  130. Borgland SL, Taha SA, Sarti F, Fields HL, Bonci A. Orexin A in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine. Neuron. 2006;49:589–601.

    Article  PubMed  CAS  Google Scholar 

  131. Leinninger GM, Jo YH, Leshan RL, Louis GW, Yang HY, Barrera JG, et al. Leptin acts via leptin receptor-expressing lateral hypothalamic neurons to modulate the mesolimbic dopamine system and suppress feeding. Cell Metab. 2009;10:89–98.

    Article  PubMed  CAS  Google Scholar 

  132. Squire LR. Memory systems of the brain: a brief history and current perspective. Neurobiol Learn Mem. 2004;82:171–7.

    Article  PubMed  Google Scholar 

  133. Molteni R, Barnard RJ, Ying Z, Roberts CK, Gomez-Pinilla F. A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience. 2002;112:803–14.

    Article  PubMed  CAS  Google Scholar 

  134. Martin B, Pearson M, Brenneman R, Golden E, Keselman A, Iyun T, et al. Conserved and differential effects of dietary energy intake on the hippocampal transcriptomes of females and males. Plos One. 2008;3.

  135. Tracy AL, Jarrard LE, Davidson TL. The hippocampus and motivation revisited: appetite and activity. Behav Brain Res. 2001;127:13–23.

    Article  PubMed  CAS  Google Scholar 

  136. Diano S, Farr SA, Benoit SC, McNay EC, da Silva I, Horvath B, et al. Ghrelin controls hippocampal spine synapse density and memory performance. Nat Neurosci. 2006;9:381–8.

    Article  PubMed  CAS  Google Scholar 

  137. Lathe R. Hormones and the hippocampus. J Endocrinol. 2001;169:205–31.

    Article  PubMed  CAS  Google Scholar 

  138. Moon M, Kim S, Hwang L, Park S. Ghrelin regulates hippocampal neurogenesis in adult mice. Endocr J. 2009;56:525–31.

    Article  PubMed  CAS  Google Scholar 

  139. Ur E, Wilkinson DA, Morash BA, Wilkinson M. Leptin immunoreactivity is localized to neurons in rat brain. Neuroendocrinology. 2002;75:264–72.

    Article  PubMed  CAS  Google Scholar 

  140. Shanley LJ, Irving AJ, Harvey J. Leptin enhances NMDA receptor function and modulates hippocampal synaptic plasticity. J Neurosci. 2001;21: art. no.-RC186.

  141. Durakoglugil M, Irving AJ, Harvey J. Leptin induces a novel form of NMDA receptor-dependent long-term depression. J Neurochem. 2005;95:396–405.

    Article  PubMed  CAS  Google Scholar 

  142. Moult PR, Milojkovic B, Harvey J. Leptin reverses long-term potentiation at hippocampal CA1 synapses. J Neurochem. 2009;108:685–96.

    Article  PubMed  CAS  Google Scholar 

  143. Li XL, Aou S, Oomura Y, Hori N, Fukunaga K, Hori T. Impairment of long-term potentiation and spatial memory in leptin receptor-deficient rodents. Neuroscience. 2002;113:607–15.

    Article  PubMed  CAS  Google Scholar 

  144. Carlini VP, Varas MM, Cragnolini AB, Schioth HB, Scimonelli TN, de Barioglio SR. Differential role of the hippocampus, amygdala, and dorsal raphe nucleus in regulating feeding, memory, and anxiety-like behavioral responses to ghrelin. Biochem Biophys Res Commun. 2004;313:635–41.

    Article  PubMed  CAS  Google Scholar 

  145. Kitamura T, Feng Y, Kitamura YI, Chua Jr SC, Xu AW, Barsh GS, et al. Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nat Med. 2006;12:534–40.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the UK Medical Research Council Centre for Obesity and Related metabolic Disorders (MRC-CORD) and the EU FP7- HEALTH- 2009- 241592 EurOCHIP. X Shan is supported by the Cambridge Overseas Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giles S. H. Yeo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shan, X., Yeo, G.S.H. Central leptin and ghrelin signalling: Comparing and contrasting their mechanisms of action in the brain. Rev Endocr Metab Disord 12, 197–209 (2011). https://doi.org/10.1007/s11154-011-9171-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-011-9171-7

Keywords

Navigation