Skip to main content

Advertisement

Log in

Endocrine-disrupting chemicals and skin manifestations

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Endocrine-disrupting chemicals (EDCs) are exogenous compounds that have the ability to disrupt the production and actions of hormones through direct or indirect interaction with hormone receptors, thus acting as agonists or antagonists. Human health is affected after either individual occupation or dietary and environmental exposure to EDCs. On the other hand, skin is one of the largest organs of the body and its main function is protection from noxious substances. EDCs perturb the endocrine system, and they are also carcinogenic, immunotoxic, and hepatotoxic to human skin. In addition, their effects on keratinocytes, melanocytes, sebocytes, inflammatory and immunological cells, and skin stem cells produce inflammatory and allergic skin diseases, chloracne, disorders of skin pigmentation, skin cancer, and skin aging. Mechanisms, which EDCs use to induce these skin disorders are complicated, and involve the interference of endogenous hormones and most importantly the activation of the aryl hydrocarbon receptor signal pathway. Further studies on EDCs and skin diseases are necessary to elucidate these mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Diamanti-Kandarakis E, Bourguignon J-P, Giudice LC, Hauser R, Prins GS, Soto AM, et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocrine Reviews. 2009;30(4):293–342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kavlock RJ, Daston GP, DeRosa C, Fenner-Crisp P, Gray LE, Kaattari S, et al. Research needs for the risk assessment of health and environmental effects of endocrine disruptors: a report of the US EPA-sponsored workshop. Environmental Health Perspectives. 1996;104:715–40.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bertin MJ, Moeller P, Guillette Jr LJ, Chapman RW. Using machine learning tools to model complex toxic interactions with limited sampling regimes. Environmental Science & Technology. 2013;47:2728–36.

    Article  CAS  Google Scholar 

  4. Zoeller RT, Brown TR, Doan LL, Gore AC, Skakkebaek NE, Soto AM, et al. Endocrine-disrupting chemicals and public health protection: a statement of principles from the Endocrine Society. Endocrinology. 2012;153:4097–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Caliman FA, Gavrilescu M. Pharmaceuticals, personal care products and endocrine disrupting agents in the environment—a review. Clean-Soil Air Water. 2009;37:277–303.

    Article  CAS  Google Scholar 

  6. Balabanič D, Rupnik M, Klemenčič AK. Negative impact of endocrine-disrupting compounds on human reproductive health. Reprod Fertil Dev. 2011;23(3):403–16.

    PubMed  Google Scholar 

  7. Nicolopoulou-Stamati P, Hens L, Sasco AJ. Cosmetics as endocrine disruptors: are they a health risk? Rev Endocr Metab Disord. 2015;16(4):373–83.

    Article  CAS  PubMed  Google Scholar 

  8. Fingerhut M, Nelson DI, Driscoll T, Concha-Barrientos M, Steenland K, Punnett L, et al. The contribution of occupational risks to the global burden of disease: summary and next steps. La Medicina del lavoro. 2006;97:313–21.

    PubMed  Google Scholar 

  9. Greenberg H, Raymond SU, Leeder SR. The prevention of global chronic disease: academic public health's new frontier. American Journal of Public Health. 2011;101:1386–91.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Boyle CA, Boulet S, Schieve LA, Cohen RA, Blumberg SJ, Yeargin-Allsopp M, et al. Trends in the prevalence of developmental disabilities in US children, 1997-2008. Pediatrics. 2011;127:1034–42.

    Article  PubMed  Google Scholar 

  11. Kabir ER, Rahman MS, Rahman I. A review on endocrine disruptors and their possible impacts on human health. Environmental Toxicology and Pharmacology. 2015;40:241–58.

    Article  CAS  PubMed  Google Scholar 

  12. Lu YC, Wong PN. PCB poisoning in Japan and Taiwan. Dermatological, medical, and laboratory findings of patients in Taiwan and their treatments. Progress in clinical and biological research. 1984;137:81–115.

    CAS  PubMed  Google Scholar 

  13. Mitoma C, Mine Y, Utani A, Imafuku S, Muto M, Akimoto T, et al. Current skin symptoms of Yusho patients exposed to high levels of 2,3,4,7,8-pentachlorinated dibenzofuran and polychlorinated biphenyls in 1968. Chemosphere. 2015;137:45–51.

    Article  CAS  PubMed  Google Scholar 

  14. Gallagher RP, Macarthur AC, Lee TK, Weber JP, Leblanc A, Mark Elwood J, et al. Plasma levels of polychlorinated biphenyls and risk of cutaneous malignant melanoma: a preliminary study. Int J Cancer. 2011;128(8):1872–80.

    Article  CAS  PubMed  Google Scholar 

  15. Ju Q, Zouboulis CC, Xia L. Environmental pollution and acne: chloracne. Dermato-endocrinology. 2009;1:125–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Panteleyev AA, Bickers DR. Dioxin-induced chloracne—reconstructing the cellular and molecular mechanisms of a classic environmental disease. Experimental Dermatology. 2006;15:705–30.

    Article  CAS  PubMed  Google Scholar 

  17. Knerr S, Schrenk D. Carcinogenicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in experimental models. Mol Nutr Food Res. 2006;50(10):897–907.

    Article  CAS  PubMed  Google Scholar 

  18. Joshi AD, Corral R, Catsburg C, et al. Red meat and poultry, cooking practices, genetic susceptibility and risk of prostate cancer: results from a multiethnic case-control study. Carcinogenesis. 2012;33:2108–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tattersall R. Pott's puffy tumour. Lancet. 2002;359:1060–3.

    Article  PubMed  Google Scholar 

  20. Higginbotham S, RamaKrishna NV, Johansson SL, Rogan EG, Cavalieri EL. Tumor-initiating activity and carcinogenicity of dibenzo[a,l]pyrene versus 7,12-dimethylbenz[a]anthracene and benzo[a]pyrene at low doses in mouse skin. Carcinogenesis. 1993;14:875–8.

    Article  CAS  PubMed  Google Scholar 

  21. Guo Y, Kannan K. Comparative assessment of human exposure to phthalate esters from house dust in China and the United States. Environmental Science & Technology. 2011;45:3788–94.

    Article  CAS  Google Scholar 

  22. Pan T-L, Wang P-W, Aljuffali IA, et al. Dermal toxicity elicited by phthalates: evaluation of skin absorption, immunohistology, and functional proteomics. Food and Chemical Toxicology. 2014;65:105–14.

    Article  CAS  PubMed  Google Scholar 

  23. Koniecki D, Wang R, Moody RP, Zhu J. Phthalates in cosmetic and personal care products: concentrations and possible dermal exposure. Environmental Research. 2011;111:329–36.

    Article  CAS  PubMed  Google Scholar 

  24. Beko G, Callesen M, Weschler CJ, et al. Phthalate exposure through different pathways and allergic sensitization in preschool children with asthma, allergic rhinoconjunctivitis and atopic dermatitis. Environmental Research. 2015;137:432–9.

    Article  CAS  PubMed  Google Scholar 

  25. Medeiros AM, Devlin DJ, Keller LH. Evaluation of skin sensitization response of dialkyl (C6-C13) phthalate esters. Contact Dermatitis. 1999;41:287–9.

    Article  CAS  PubMed  Google Scholar 

  26. Takano H, Yanagisawa R, K-i I, et al. Di-(2-ethylhexyl) phthalate enhances atopic dermatitis-like skin lesions in mice. Environmental Health Perspectives. 2006;114:1266–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Just AC, Whyatt RM, Perzanowski MS, et al. Prenatal exposure to butylbenzyl phthalate and early eczema in an urban cohort. Environmental Health Perspectives. 2012;120:1475–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bekö G, Weschler CJ, Langer S, Callesen M, Toftum J, Clausen G. Children's phthalate intakes and resultant cumulative exposures estimated from urine compared with estimates from dust ingestion, inhalation and dermal absorption in their homes and daycare centers. PLoS One. 2013;8(4):e62442.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wang IJ, Karmaus WJ. The effect of phthalate exposure and filaggrin gene variants on atopic dermatitis. Environ Res. 2015;136:213–8.

    Article  CAS  PubMed  Google Scholar 

  30. Banerjee M, Banerjee N, Bhattacharjee P, Mondal D, Lythgoe PR, Martínez M, et al. High arsenic in rice is associated with elevated genotoxic effects in humans. Sci Rep. 2013;3:2195. doi:10.1038/srep02195.

    PubMed  Google Scholar 

  31. Ling-I Hsu, Meei-Maan Wu,Yuan-Hung Wang, Cheng-Yeh Lee, Tse-Yen Yang, Bo-Yu Hsiao, and Chien-Jen Chen. Association of environmental arsenic exposure, genetic polymorphisms of susceptible genes, and skin cancers in Taiwan. Biomed Res Int. 2015; 29. doi: 10.1155/2015/892579

  32. Ahmed TS, Misbahuddin M. Role of linoleic acid in arsenical palmar keratosis. Int J Dermatol. 2016;55(3):289–95.

    Article  CAS  PubMed  Google Scholar 

  33. Rudolph C, Schnoor M, Eisemann N, Katalinic A. Incidence trends of nonmelanoma skin cancer in Germany from 1998 to 2010. Journal Der Deutschen Dermatologischen Gesellschaft. 2015;13:788–97.

    PubMed  Google Scholar 

  34. Diepgen TL, Mahler V. The epidemiology of skin cancer. British Journal of Dermatology. 2002;146:1–6.

    Article  PubMed  Google Scholar 

  35. Siddens LK, Larkin A, Krueger SK, et al. Polycyclic aromatic hydrocarbons as skin carcinogens: comparison of benzo[a]pyrene, dibenzo[def, p]chrysene and three environmental mixtures in the FVB/N mouse. Toxicol Appl Pharmacol. 2012;264(3):377–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tsai PJ, Shieh HY, Lee WJ, Lai SO. Health-risk assessment for workers exposed to polycyclic aromatic hydrocarbons (PAHs) in a carbon black manufacturing industry. Science of the Total Environment. 2001;278:137–50.

    Article  CAS  PubMed  Google Scholar 

  37. Baudouin C, Charveron M, Tarroux R, Gall Y. Environmental pollutants and skin cancer. Cell Biology and Toxicology. 2002;18:341–8.

    Article  CAS  PubMed  Google Scholar 

  38. Kim KE, Cho D, Park HJ. Air pollution and skin diseases: adverse effects of airborne particulate matter on various skin diseases. Life Sci. 2016;152:126–34.

    Article  CAS  PubMed  Google Scholar 

  39. Nebert DW, Dalton TP, Okey AB, Gonzalez FJ. Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer. Journal of Biological Chemistry. 2004;279:23847–50.

    Article  CAS  PubMed  Google Scholar 

  40. Abel J, Haarmann-Stemmann T. An introduction to the molecular basics of aryl hydrocarbon receptor biology. Biological Chemistry. 2010;391:1235–48.

    Article  CAS  PubMed  Google Scholar 

  41. Godschalk R, Curfs D, Bartsch H, Van Schooten FJ, Nair J. Benzo a pyrene enhances lipid peroxidation induced DNA damage in aorta of apolipoprotein E knockout mice. Free Radical Research. 2003;37:1299–305.

    Article  CAS  PubMed  Google Scholar 

  42. Gelboin HV. Benzo alpha pyrene metabolism, activation and carcinogenesis: role and regulation of mixed-function oxidases and related enzymes. Physiological reviews. 1980;60:1107–66.

    CAS  PubMed  Google Scholar 

  43. Shimizu Y, Nakatsuru Y, Ichinose M, et al. Benzo a pyrene carcinogenicity is lost in mice lacking the aryl hydrocarbon receptor. Proceedings of the National Academy of Sciences of the United States of America. 2000;97:779–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ide F, Suka N, Kitada M, et al. Skin and salivary gland carcinogenicity of 7,12-dimethylbenz[a]anthracene is equivalent in the presence or absence of aryl hydrocarbon receptor. Cancer Letters. 2004;214:35–41.

    Article  CAS  PubMed  Google Scholar 

  45. Giantin M, Vascellari M, Lopparelli RM. Expression of the aryl hydrocarbon receptor pathway and cyclooxygenase-2 in dog tumors. Res Vet Sci. 2013;94(1):90–9.

    Article  CAS  PubMed  Google Scholar 

  46. Haarmann-Stemmann T, Bothe H, Abel J. Growth factors, cytokines and their receptors as downstream targets of arylhydrocarbon receptor (AhR) signaling pathways. Biochemical Pharmacology. 2009;77:508–20.

    Article  CAS  PubMed  Google Scholar 

  47. Brokken LJ, Giwercman YL. Gene-environment interactions in male reproductive health: special reference to the aryl hydrocarbon receptor signaling pathway. Asian J Androl. 2014;16:89–96.

    Article  PubMed  Google Scholar 

  48. Chalubinski M, Kowalski ML. Endocrine disrupters—potential modulators of the immune system and allergic response. Allergy. 2006;61:1326–35.

    Article  CAS  PubMed  Google Scholar 

  49. Yang S-N, Hsieh C-C, Kuo H-F, Lee M-S, Huang M-Y, Kuo C-H, et al. The effects of environmental toxins on allergic inflammation. Allergy Asthma Immunol Res. 2014;6(6):478–84.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yamamoto O, Tokura Y. Photocontact dermatitis and chloracne: two major occupational and environmental skin diseases induced by different actions of halogenated chemicals. J Dermatol Sci. 2003;32(2):85–94.

    Article  CAS  PubMed  Google Scholar 

  51. Hafeez F, Maibach H. An overview of parabens and allergic contact dermatitis. 24 Skin therapy letter. 2013;18:5–7.

    Google Scholar 

  52. Salles JC, Deschamps FJ. Allergic contact dermatitis due to a PVC table cover. Occupational Medicine-Oxford. 2010;60:662–4.

    Article  CAS  Google Scholar 

  53. Mastrangelo G, Veller Fornasa C, Pavanello S, et al. Polyaromatic hydro-carbons administered in humans by dermal route increase total IgE. Int J Immunopathol Pharmacol. 2003;16(2):145–50.

    CAS  PubMed  Google Scholar 

  54. Williams HC. Epidemiology of atopic dermatitis. Clin Exp Dermatol. 2000;25:522–9.

    Article  CAS  PubMed  Google Scholar 

  55. Williams H, Stewart A, von Mutius E, Cookson W, Anderson HR. Is eczema really on the increase worldwide? J Allergy Clin Immunol. 2008;121:947–54.

    Article  PubMed  Google Scholar 

  56. Kim K. Influences of environmental chemicals on atopic dermatitis. Toxicol Res. 2015;31(2):89–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kato T, Tada-Oikawa S, Takahashi K, Saito K, Wang L, Nishio A, et al. Endocrine disruptors that deplete glutathione levels in APC promote Th2 polarization in mice leading to the exacerbation of airway inflammation. Eur J Immunol. 2006;36:1199–209.

    Article  CAS  PubMed  Google Scholar 

  58. Kepley CL, Lauer FT, Oliver JM, et al. Environmental polycyclic aromatic hydrocarbons, benzo(a)pyrene(BaP) and BaP-quinones, enhance IgE-mediated histamine release and IL-4 production in human basophils. Clin Immunol. 2003;107(1):10–9.

    Article  CAS  PubMed  Google Scholar 

  59. Walker DB, Williams WC, Copeland CB, et al. Persistent suppression of contact hypersensitivity, and altered T-cell parameters in F344 rats exposed perinatally to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Toxicology. 2004;197(1):57–66.

    Article  CAS  PubMed  Google Scholar 

  60. Tsuji G, Takahara M, Uchi H, et al. An environmental contaminant, benzo(a)pyrene, induces oxidative stress-mediated interleukin-8 production in human keratinocytes via the aryl hydrocarbon receptor signaling pathway. J Dermatol Sci. 2011;62(1):42–9.

    CAS  PubMed  Google Scholar 

  61. Hu T, Pan Z, Yu Q, Mo X, Song N, Yan M, et al. Benzo(a)pyrene induces interleukin (IL)-6 production and reduces lipid synthesis in human SZ95 sebocytes via the aryl hydrocarbon receptor signaling pathway. Environ Toxicol Pharmacol. 2016;43:54–60.

    Article  CAS  PubMed  Google Scholar 

  62. D'Cruz D. Autoimmune diseases associated with drugs, chemicals and environmental factors. Toxicol Lett. 2000;112–113:421–32.

    Article  PubMed  Google Scholar 

  63. Nguyen LT, Ramanathan M, Weinstock-Guttman B, et al. Detection of cytochrome P450 and other drug-metabolizing enzyme mRNAs in peripheral blood mononuclear cells using DNA arrays. Drug Metab Dispos. 2000;28(8):987–93.

    CAS  PubMed  Google Scholar 

  64. Esser C, Bargen I, Weighardt H, Haarmann-Stemmann T, Krutmann J. Functions of the aryl hydrocarbon receptor in the skin. Semin Immunopathol. 2013;35(6):677–91.

    Article  CAS  PubMed  Google Scholar 

  65. Pesatori AC, Consonni D, Bachetti S, Zocchetti C, Bonzini M, et al. Short- and long-term morbidity and mortality in the population exposed to dioxin after the “Sevesoaccident”. Ind Health. 2003;41:127–38.

    Article  CAS  PubMed  Google Scholar 

  66. Sorg O, Zennegg M, Schmid P, Fedosyuk R, Valikhnovskyi R, et al. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) poisoning in Victor Yushchenko: identification and measurement of TCDD metabolites. Lancet. 2009;374:1179–85.

    Article  CAS  PubMed  Google Scholar 

  67. Ju Q, Yang K, Zouboulis CC, Ring J, Chen W. Chloracne: from clinic to research. Dermatol Sinica. 2012;30:2–6.

    Article  Google Scholar 

  68. Saurat JH, Kaya G, Saxer-Sekulic N, Pardo B, Becker M, et al. The cutaneous lesions of dioxin exposure: lessons from the poisoning of Victor Yushchenko. Toxicol Sci. 2012;125:310–7.

    Article  CAS  PubMed  Google Scholar 

  69. Saurat JH, Sorg O. Chloracne, a misnomer and its implications. Dermatology. 2010;221:23–6.

    Article  CAS  PubMed  Google Scholar 

  70. Patterson AT, Tian FT, Elston DM, Kaffenberger BH. Occluded cigarette smoke exposure causing localized chloracne-like comedones. Dermatology. 2015;231(4):322–5.

    Article  CAS  PubMed  Google Scholar 

  71. Sutter CH, Bodreddigari S, Campion C, Wible RS, Sutter TR. 2,3,7,8-Tetrachlorodibenzo-p-dioxin increases the expression of genes in the human epidermal differentiation complex and accelerates epidermal barrier formation. Toxicol Sci. 2011;124:128–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ju Q, Fimmel S, Hinz N, Stahlmann R, Xia L, et al. 2,3,7,8-Tetrachlorodibenzo-p-dioxin alters sebaceous gland differentiation characteristics in vitro. Exp Dermatol. 2011;20:320–5.

    Article  CAS  PubMed  Google Scholar 

  73. Forrester AR, Elias MS, Woodward EL, Graham M, Williams FM, Reynolds NJ. Induction of a chloracne phenotype in an epidermal equivalent model by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is dependent on aryl hydrocarbon receptor activation and is not reproduced by aryl hydrocarbon receptor knock down. J Dermatol Sci. 2014;73(1):10–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bock KW. Toward elucidation of dioxin-mediated chloracne and Ah receptor functions. Biochem Pharmacol. 2016 Jan 23. pii: S0006-2952(16)00034-4. doi: 10.1016/j.bcp.2016.01.010.

  75. Suskind RR. Environment and the skin. Environmental health perspectives. 1977;20:27–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kawasaki G, Yoshitomi I, Yanamoto S, et al. Pigmentation of the oral mucosa by PCB poisoning in Yusho patients. Archives of Oral Biology. 2013;58:1260–4.

    Article  CAS  PubMed  Google Scholar 

  77. Luecke S, Backlund M, Jux B, et al. The aryl hydrocarbon receptor (AhR), a novel regulator of human melanogenesis. Pigment Cell Melanoma Res. 2010;23(6):828–33.

    Article  CAS  PubMed  Google Scholar 

  78. Zouboulis CC, Makrantonaki E. Clinical aspects and molecular diagnostics of skin aging. Clin Dermatol. 2011;29:3–14.

    Article  PubMed  Google Scholar 

  79. Vierkoetter A, Schikowski T, Ranft U, et al. Airborne particle exposure and extrinsic skin aging. Journal of Investigative Dermatology. 2010;130:2719–26.

    Article  CAS  Google Scholar 

  80. Morita A, Torii K, Maeda A, Yamaguchi Y. Molecular basis of tobacco smoke-induced premature skin aging. Journal of Investigative Dermatology Symposium Proceedings. 2009;14:53–5.

    Article  CAS  Google Scholar 

  81. Borska L, Andrys C, Krejsek J, Palicka V, Vorisek V, Hamakova K, et al. Influence of dermal exposure to ultraviolet radiation and coal tar (polycyclic aromatic hydrocarbons) on the skin aging process. J Dermatol Sci. 2016;81(3):192–202.

    Article  CAS  PubMed  Google Scholar 

  82. Li M, Vierkötter A, Schikowski T, Hüls A, Ding A, Matsui MS, et al. Epidemiological evidence that indoor air pollution from cooking with solid fuels accelerates skin aging in Chinese women. J Dermatol Sci. 2015;79(2):148–54.

    Article  CAS  PubMed  Google Scholar 

  83. Roberts WE. Pollution as a risk factor for the development of melasma and other skin disorders of facial hyperpigmentation—is there a case to be made? J Drugs Dermatol. 2015;14(4):337–41.

    CAS  PubMed  Google Scholar 

  84. Ono Y, Torii K, Fritsche E, et al. Role of the aryl hydrocarbon receptor in tobacco smoke extractinduced matrix metalloproteinase-1 expression. Experimental Dermatology. 2013;22:349–53.

    Article  CAS  PubMed  Google Scholar 

  85. Fu PP, Xia Q, Sun X, Yu H. Phototoxicity and environmental transformation of polycyclic aromatic hydrocarbons (PAHs)-light-induced reactive oxygen species, lipid peroxidation, and DNA damage. Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews. 2012;30:1–41.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 81472894), Shanghai Health System Excellent Academic Leader Training Project (Grant No. XBR2013113), and Shanghai Municipal Health Bureau Key Project (Grant No. 20134037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos C. Zouboulis.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, Q., Zouboulis, C.C. Endocrine-disrupting chemicals and skin manifestations. Rev Endocr Metab Disord 17, 449–457 (2016). https://doi.org/10.1007/s11154-016-9371-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-016-9371-2

Keywords

Navigation