Skip to main content
Log in

Surfactant-promoted enhancement in bioremediation of hexavalent chromium to trivalent chromium by naturally occurring wall algae

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The discharge of hexavalent chromium [Cr(VI)] has resulted in significant pollution because of the presence of Cr(VI) oxyanions. They are highly water-soluble, cell-permeable and transportable in water sources. To eliminate the toxic effects, various chemical and biological methods have been developed. Bioremediation can be used as an effective tool over conventional chemical processes for the removal of toxic hexavalent chromium species. Blue-green algae-mediated bioremediation is gaining more interest due to its availability and efficiency. In this method, [Cr(VI)] is reduced to relatively less toxic [Cr(III)] as a consequence of oxidation of organic components present in the water extract of wall algae. The percent removal of Cr(VI) is increased by the addition of the anionic surfactant sodium dodecyl sulfate (SDS) and the neutral surfactant Triton-X-100 (TX-100). It was found that the percent removal efficiency of unanalyzed, TX-100 and SDS catalyzed (3 × 10−2 M) systems are approximately 47, 54 and 80 %, respectively, in 8 days. The efficiency of these systems increases with the increase in the equivalent amount of added surfactant (3 × 10−1 M). The reaction proceeds to almost completion (96 %) with the increase in the added surfactant (3 × 10−1 M). The optimum pH of the reaction was found to be 2 and the temperature 40 °C. The amount of Cr(III) formed was measured by the fluorescence technique with a known dye selective to Cr(III), and the presence of soluble Cr(VI) in the mixture was estimated by a diphenylcarbazide kit. This method was further used to determine the removal efficiency of the SDS-catalyzed system in collected [Cr(VI)]-contaminated water sources, i.e. a pond beside the Sukinda valley in Cuttack, India, and pond water from the local area, sea water from Cuttack and Digha, W.B., India, as well as from the tanning industry. All the observations were recorded using UV–Vis, fluorescence and FTIR spectrophotometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. D.V. Nica, M. Bura, I. Gergen, M. Harmanescu, D.M. Bordean, Bioaccumulative and conchological assessment of heavy metal transfer in a soil-plant-snail food chain. Chem. Cent. J. 6, 55 (2012)

    Article  CAS  Google Scholar 

  2. S. Lewicki, R. Zdanowski, M. Krzyżowska, A. Lewicka, B. Dębski, M. Niemcewicz, M. Goniewicz, The role of Chromium III in the organism and its possible use in diabetes and obesity treatment. Ann. Agric. Environ. Med. 21, 331–335 (2014)

    Article  Google Scholar 

  3. D. Ghosh, B. Bhattacharya, B. Mukherjee, B. Manna, M. Sinha, J. Chowdhury, S. Chowdhury, Role of chromium supplementation in Indians with type 2 diabetes mellitus. J. Nutr. Biochem. 13, 690–697 (2002)

    Article  CAS  Google Scholar 

  4. R. Codd, C.T. Dillon, A. Levina, P.A. Lay, Studies on the genotoxicity of chromium: from the test tube to the cell. Coord. Chem. Rev. 216–217, 537–582 (2001)

    Article  Google Scholar 

  5. M. Costa, Potential hazards of hexavalent chromate in our drinking water. Toxicol. Appl. Pharmacol. 188, 1–5 (2003)

    Article  CAS  Google Scholar 

  6. R. Saha, R. Nandi, B. Saha, Sources and toxicity of hexavalent chromium. J. Coord. Chem. 64, 1782–1806 (2011)

    Article  CAS  Google Scholar 

  7. A.P. Das, S. Mishra, Hexavalent Chromium (VI): environment pollutant and health hazard. J. Environ. Res. Dev. 2, 386–392 (2008)

    CAS  Google Scholar 

  8. A. Baral, R.D. Engelken, Chromium based regulation and greening in metal finishing industries in the USA. Environ. Sci. Policy 5, 121–133 (2002)

    Article  CAS  Google Scholar 

  9. S.A. Chand, V.K. Aggarwal, P. Kumar, Removal of Hexavelent Chromium from the Wastewater by Adsorption. Indian J. Environ. Health 36, 151–158 (1994)

    CAS  Google Scholar 

  10. S. Chakrabarti, B. Chaudhuri, S. Bhattacharjee, A.K. Ray, B.K. Dutta, Photo-reduction of hexavalent chromium in aqueous solution in the presence of zinc oxide as semiconductor catalyst. Chem. Eng. J. 153, 86–93 (2009)

    Article  CAS  Google Scholar 

  11. G. Crini, Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polym. Sci. 30, 38–70 (2005)

    Article  CAS  Google Scholar 

  12. G.P. Haight, E. Perchonock, F. Emmenegger, G. Gordon, The mechanism of the oxidation of sulphur(IV) by chromium(VI) in acid solution. J. Am. Chem. Soc. 87, 3835–3840 (1965)

    Article  CAS  Google Scholar 

  13. T. Olmetz, The optimization of Cr(VI) reduction and removal by electrocoagulation using response surface methodology. J. Hazard. Mater. 162, 1371–1378 (2009)

    Article  Google Scholar 

  14. M. Rivero-Huguet, W.D. Marshall, Influence of various organic molecules on the reduction of hexavalent chromium mediated by zero-valent iron. Chemosphere 76, 1240–1248 (2009)

    Article  CAS  Google Scholar 

  15. S.K. Sahu, P. Meshram, B.D. Pandey, V. Kumar, T.R. Mankhand, Removal of chromium(III) by cation exchange resin, Indion 790 for tannery waste treatment. Hydrometallurgy 99, 170–174 (2009)

    Article  CAS  Google Scholar 

  16. M. Wazne, S.C. Jagupilla, D.H. Moon, S.C. Jagupilla, C. Christodoulatos, M.G. Kim, Assessment of calcium polysulfide for the remediation of hexavalent chromium in chromite ore processing residue (COPR). J. Hazard. Mater. 143, 620–628 (2007)

    Article  CAS  Google Scholar 

  17. P. Yuan, D. Liu, M. Fan, D. Yang, R. Zhu, F. Ge, J. Zhu, H. He, Removal of hexavalent chromium [Cr(VI)] from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles. J. Harzard. Mater. 173, 614–621 (2009)

    Article  Google Scholar 

  18. Y. Sahin, A. Öztürk, Biosorption of chromium(VI) ions from aqueous solution by the bacterium Bacillus thuriengensis. Process Biochem. 40, 1895–1901 (2005)

    Article  CAS  Google Scholar 

  19. K. Vijayaraghavan, Y.-S. Yun, Bacterial biosorbents and biosorption. Biotechnol. Adv. 26, 266–291 (2008)

    Article  CAS  Google Scholar 

  20. R. Saha, K. Mukherjee, I. Saha, A. Ghosh, S.K. Ghosh, B. Saha, Removal of hexavalent chromium from water by adsorption on mosambi (Citrus limetta) peel. Res. Chem. Intermed. 39, 2245–2257 (2013)

    Article  CAS  Google Scholar 

  21. R. Saha, I. Saha, R. Nandi, A. Ghosh, A. Basu, S.K. Ghosh, B. Saha, Application of Chattim tree (Devil tree, Alstonia scholaris) saw dust as a biosorbent for removal of hexavalent chromium from aqueous solution. Can. J. Chem. Eng. 91, 814 (2013)

    Article  CAS  Google Scholar 

  22. K. Mukherjee, R. Saha, A. Ghosh, S.K. Ghosh, P.K. Maji, B. Saha, Surfactant-assisted bioremediation of hexavalent chromium by use of an aqueous extract of sugar cane bagasse. Res. Chem. Intermed. 40, 1727–1734 (2014)

    Article  CAS  Google Scholar 

  23. H.N. Bhatti, M. Amin, Removal of zirconium (IV) from aqueous solution by coriolus versicolor equilibrium and thermodynamic study. Ecol. Eng. 51, 178–180 (2013)

    Article  Google Scholar 

  24. W. Bahafid, H. Sayel, N.T. Joutey, N. El Ghachtouli, Removal mechanism of hexavalent chromium by a novel strain of Pichia anomala isolated from industrial effluents of Fez (Morocco). J. Environ. Sci. Eng. 5, 980–991 (2011)

    CAS  Google Scholar 

  25. S. Congeevaram, S. Dhanarani, J. Park, M. Dexilin, K. Thamaraiselvi, Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J. Hazard. Mater. 146, 270–277 (2007)

    Article  CAS  Google Scholar 

  26. K.K. Kumar, M.K. Prasad, G.V.S. Sarma, C.V.R. Murthy, Biosorption studies for removal of chromium using immobilized marine alga Isochrysis galbana. Indian J. Mar. Sci 35, 263–267 (2006)

    CAS  Google Scholar 

  27. R. Nandi, K. Mukherjee, B. Saha, Surfactant assistant enhancement of bioremediation rate for hexavalent chromium by water algae. Biochem. Physiol. 4, 173 (2015). doi:10.4172/2168-9652.1000173

    Google Scholar 

  28. G.J. Puzon, A.R. Roberts, D.M. Kramer, L. Xun, Formation of soluble organo–chromium(III) complexes after chromate reduction in the presence of cellular organics. Environ. Sci. Technol. 39, 2811–2817 (2005)

    Article  CAS  Google Scholar 

  29. G.J. Puzon, R.K. Tokala, H. Zhang, D. Yonge, B.M. Peyton, Mobility and recalcitrance of organo-chromium(III) complexes. Chemosphere 70, 2054–2059 (2008)

    Article  CAS  Google Scholar 

  30. T. Punnett, E.C. Derrenbacker, The amino acid composition of algal cell walls. J. Gen. Microbiol. 44, 105–114 (1966)

    Article  CAS  Google Scholar 

  31. M.M. Allen, R.Y. Stanier, Selective isolation of blue–green algae from water and soil. J. Gen. Microbiol. 51, 203–209 (1968)

    Article  CAS  Google Scholar 

  32. A. Ghosh, R. Saha, K. Mukhejee, S.K. Ghosh, S.S. Bhattacharyya, S. Laskar, B. Saha, Selection of suitable combination of nonfunctional micellar catalyst and hetero-aromatic nitrogen base as promoterfor chromic acid oxidation of ethanol to acetaldehyde in aqueous medium at room temperature. Int. J. Chem. Kinet. 45, 175–186 (2013)

    Article  CAS  Google Scholar 

  33. K. Mukherjee, R. Saha, A. Ghosh, S.K. Ghosh, B. Saha, Chromium removal technologies. Res. Chem. Intermed. 39, 2267–2286 (2012)

    Article  Google Scholar 

  34. Y. Chen, G. Tang, Q.J. Yu, T. Zhang, Y. Chen, Biosorption properties of hexavalent chromium on to biomass of tobacco-leaf residues. Environ. Technol. 30, 1003–1010 (2009)

    Article  CAS  Google Scholar 

  35. W. Wanga, Q. Zenga, M. Li, W. Zheng, D. Christianson, Adsorptive removal of carbon dioxide using polyethyleneimine loaded glass fiber in a fixed bed. Colloids Surf. A 481, 117–124 (2015)

    Article  Google Scholar 

  36. H. Luo, C. Gu, W. Zheng, F. Dai, X. Wang et al., Facile synthesis of novel size-controlled antibacterial hybrid spheres using silver nanoparticles loaded with poly-dopamine spheres. RSC Adv. 5, 13470–13477 (2015)

    Article  CAS  Google Scholar 

  37. S. Mallick, S.S. Dash, K.M. Parida, Adsorption of hexavalent chromium on manganese nodule leached residue obtained from NH3–SO2 leaching. J. Colloid Interface Sci. 297, 419–425 (2006)

    Article  CAS  Google Scholar 

  38. D. Kratochvil, P. Pimentel, B. Volesky, Removal of trivalent and hexavalent chromium by seaweed biosorbent. Environ. Sci. Technol. 32, 2693–2698 (1998)

    Article  CAS  Google Scholar 

  39. P. Miretzky, A.F. Cirelli, Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: a review. J. Hazard. Mater. 180, 1–19 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bidyut Saha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandi, R., Laskar, S. & Saha, B. Surfactant-promoted enhancement in bioremediation of hexavalent chromium to trivalent chromium by naturally occurring wall algae. Res Chem Intermed 43, 1619–1634 (2017). https://doi.org/10.1007/s11164-016-2719-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2719-0

Keywords

Navigation