Skip to main content
Log in

Significance of rod shape transformation of tetrahedral TiO2 under thermal influence for enhanced solar photocatalysis

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

TiO2 nanorods (NRs) have been successfully synthesized via simple hydrothermal technique utilizing TiCl4 as precursor at varied temperature of 160 °C, 200 °C and 250 °C, respectively. Further, thermal treatment was done in the close system at calcinations temperature thrice of the synthesis temperature. The prepared NRs were well characterized for the various physio-chemical natures of the materials. Crystallographic and morphological investigations showed that the samples exhibited high crystallinity with diameter ranges from 300 to 400 nm and length in several micrometers. XPS analysis proved the existence of oxygen defects that were created during the synthesis. The solar photocatalysis showed 81.27%, 92.20% and 58.79% removal of color by NR1, NR2 and NR3, respectively, within 300 min of direct sun irradiation time. The first-order kinetic model fits the better curve with the correlation coefficients of 0.97509, 0.97608 and 0.98417, respectively. Trapping experiments shows the dominant of holes and superoxide as the primary reactive oxygen species.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E. Wanjiru, X. Xia, J. Clean. Prod. 170, 1151 (2018)

    Article  Google Scholar 

  2. M. Bagheri, R. Roshandel, J. Shayegan, Process Saf. Environ. 117, 67 (2018)

    Article  CAS  Google Scholar 

  3. S.M. Nazimuddin, J. Gutberlet, Conserv. Recy. 134, 1 (2018)

    Article  Google Scholar 

  4. S.M. Njuguna, V.A. Makokha, X. Yan, R.W. Gituru, Q. Wang, J. Wang, J. Environ. Manag. 231, 576 (2019)

    Article  CAS  Google Scholar 

  5. B. Gao, L. Gao, J. Gao, D. Xu, Q. Wang, K. Sun, Sci. Total Environ. 666, 139 (2019)

    Article  CAS  PubMed  Google Scholar 

  6. S. Khan, M. Shahnaz, N. Jehan, S. Rehman, M.T. Shah, I. Din, J. Clean. Prod. 60, 93 (2013)

    Article  CAS  Google Scholar 

  7. O.K. Ezeh, K.E. Agho, M.J. Dibley, J. Hall, A.N. Page, Int. J. Environ. Res. Public Health. 11, 9256 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  8. L. Levidow, D. Zaccaria, R. Mai, E. Vivas, M. Todorovic, A. Scardigno, Agr. Water Manag. 146, 84 (2014)  

  9. B. Liu, E.S. Aydil, J. Am. Chem. Soc. 131, 3985 (2009)

    Article  CAS  PubMed  Google Scholar 

  10. ​H. Yang, S. Zhu, N. Pan, J. Appl. Polym. Sci. 92, 3201 (2004)

    Article  CAS  Google Scholar 

  11. S. Wu, Z. Weng, X. Liu, K.W.K. Yeung, P.K. Chu, Adv. Funct. Mater. 24, 5464 (2014)

    Article  CAS  Google Scholar 

  12. J. Cheng, Y. Wang, Y. Xing, M. Shahid, W. Pan, RSC Adv. 7, 15330 (2017)

    Article  CAS  Google Scholar 

  13. S. Cao, F. Tao, Y. Tang, Y. Li, J. Yu, Chem. Soc. Rev. 45, 4747 (2016)

    Article  CAS  PubMed  Google Scholar 

  14. ​P. Deak, B. Aradi, T. Frauenheim, Phys. Rev. B. 83, 155207 (2011)

    Article  Google Scholar 

  15. ​H. Park, H. Kim, G. Moon, W. Choi, Energy Environ. Sci. 9, 411 (2016)

    Article  CAS  Google Scholar 

  16. ​M. Khairy, W. Zakaria, J. Pet. 23, 419 (2014)

    Google Scholar 

  17. ​B. Chen, J. Hou, K. Lu, Langmuir 29, 5911 (2013)

    Article  CAS  PubMed  Google Scholar 

  18. ​A. Subramanian, Z. Pan, H. Li, L. Zhou, W. Li, Y. Qiu, Y. Xu, Y. Hou, C. Muzi, Y. Zhang, Appl. Surf. Sci. 420, 631 (2017)

    Article  CAS  Google Scholar 

  19. G. Peng, J. Wu, S. Wu, X. Xu, J.E. Ellis, G. Xu, A. Stard, D. Gao, J. Mater. Chem. A. 4, 1520 (2016)

    Article  CAS  Google Scholar 

  20. ​S. Suphankij, W. Mekprasart, W. Pecharapa, Energy Procedia 34, 751 (2013)

    Article  CAS  Google Scholar 

  21. ​N. Gemo, F. Menegazzo, P. Biasi, A. Sarkar, A. Samikannu, D.G. Raut, K. Kordás, A.R. Rautio, M. Mohl, D. Boström, A. Shchukarev, J.P. Mikkola, RSC Adv. 6, 103311 (2016)

    Article  CAS  Google Scholar 

  22. ​X. Wang, Z. Li, J. Shi, Y. Yu, Chem. Rev. 114, 9346 (2014)

    Article  CAS  PubMed  Google Scholar 

  23. L. Huang, T. Liu, H. Zhang, W.W. Guo, W. Zeng, J. Mater. Sci. Mater. El. 23, 2024 (2012)

    Article  CAS  Google Scholar 

  24. ​G. Shen, D. Chen, Front. Optoelectron. China. 3, 125 (2010)

    Article  Google Scholar 

  25. G.P. Dai, S.Q. Liu, Y. Liang, T.X. Luo, Appl. Surf. Sci. 264, 157 (2013)

    Article  CAS  Google Scholar 

  26. J. Su, X.X. Zou, G.D. Li, X. Wei, C. Yan, Y.N. Wang, J. Zhao, L.J. Zhou, J.S. Chen, J. Phys. Chem. C. 115, 8064 (2011)

    Article  CAS  Google Scholar 

  27. ​M. Ge, C. Cao, J. Huang, S. Li, Z. Chen, K.Q. Zhang, S.S. Al-Deyab, Y. Lai, J. Mater. Chem. A. 4, 6772 (2016)

    Article  CAS  Google Scholar 

  28. Y.V. Kolenko, K.A. Kovnir, A.I. Gavrilov, A.V. Garshev, J. Frantti, O.I. Lebedev, B.R. Churagulov, G.V. Tendeloo, M. Yoshimura, J. Phys. Chem. B. 110, 4030 (2006)

    Article  CAS  Google Scholar 

  29. ​X. Liu, J. Yao, J. Luo, X. Duan, Y. Yao, T. Liu, Langmuir 33, 7479 (2017)

    Article  CAS  PubMed  Google Scholar 

  30. ​R. Song, W. Zhou, B. Luo, D. Jing, Appl. Surf. Sci. 416, 957 (2017)

    Article  CAS  Google Scholar 

  31. ​W. Chen, Y. Wang, S. Liu, L. Gao, L. Mao, Z. Fan, W. Shangguan, Z. Jiang, Appl. Surf. Sci. 445, 527 (2018)

    Article  CAS  Google Scholar 

  32. ​G. Liu, J. Ji, P. Hu, S. Lin, H. Huang, Appl. Surf. Sci. 433, 329 (2018)

    Article  CAS  Google Scholar 

  33. C. Jin, Y. Dai, W. Wei, X. Ma, M. Li, B. Huang, Appl. Surf. Sci. 426, 639 (2017)

    Article  CAS  Google Scholar 

  34. ​Y. Liu, Z. Ye, D. Li, M. Wang, Y. Zhang, W. Huang, Appl. Surf. Sci. 473, 500 (2019)

    Article  CAS  Google Scholar 

  35. J.C. Hernández-Garrido, M.M. Titirici, J. Colloid Interface Sci. 547, 14 (2019)

    Article  PubMed  Google Scholar 

  36. ​A. Nawaz, P. Saravanan, RSC Adv. 10, 19490 (2020)

    Article  CAS  Google Scholar 

  37. ​M. Iraj, F.D. Nayeri, E. Asl-Soleimani, K. Narimani, J. Alloys. Compd. 659, 44 (2016)

    Article  CAS  Google Scholar 

  38. W. Wang, M.O. Tadé, Z. Shao, Chem. Soc. Rev. 44, 5371 (2015)

    Article  CAS  PubMed  Google Scholar 

  39. ​J. Tang, Y. Liu, H. Li, Z. Tan, D. Li, Chem. Commun. 49, 5498 (2013)

    Article  CAS  Google Scholar 

  40. F. Scarpelli, T.F. Mastropietro, T. Poerio, N. Godbert, in Titanium Dioxide-Material for a Sustainable Environment, ed. by D.F. Yang, (InTech Open, 2018), p. 57

  41. ​Y. Wang, L. Li, X. Huang, Q. Li, G. Li, RSC Adv. 5, 34302 (2015)

    Article  CAS  Google Scholar 

  42. ​S.P. Kim, M.Y. Choi, H.C. Choi, Mater. Res. Bull. 74, 85 (2016)

    Article  CAS  Google Scholar 

  43. K.H. Wang, Y.H. Hsieh, T.T. Lin, C.Y. Chang, React. Kinet. Catal. Lett. 39, 95 (2008)

    Google Scholar 

  44. ​K.S. Hemalatha, K. Rukmani, RSC Adv. 6, 74354 (2016)

    Article  CAS  Google Scholar 

  45. ​W. Ma, Z. Lu, M. Zhang, Appl. Phys. A. 66, 621 (1998)

    Article  CAS  Google Scholar 

  46. ​T. Ohsaka, J. Phys. Soc. Jpn. 48, 1661 (1980)

    Article  CAS  Google Scholar 

  47. ​S.P.S. Porto, P.A. Fleury, T.C. Damen, Phys. Rev. 154, 522 (1967)

    Article  CAS  Google Scholar 

  48. ​A. Sadeghzadeh-Attar, M.S. Ghamsari, F. Hajiesmaeilbaigi, Sh. Mirdamadi, Semicond. Phys. Quantum Electron. Optoelectron. 10, 36 (2007)

    Article  CAS  Google Scholar 

  49. ​W. Wu, K. Bhattacharyya, K. Gray, E. Weitz, J. Phys. Chem. C. 117, 20643 (2013)

  50. M. Shaban, A.M. Ashraf, M.R. Abukhadra, Sci. Rep. 8, 781 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  51. ​E. Morgado Jr., M.A.S. de Abreu, G.T. Moure, B.A. Marinkovic, P.M. Jardim, A.S. Araujo, Chem. Mater. 19, 665 (2007)

    Article  CAS  Google Scholar 

  52. G. Li, L. Li, J.B. Goates, B.F. Woodfield,  J. Am. Chem. Soc. 127, 8659 (2005)

  53. J.A. Toledo-Antonio, S. Capula, M.A. Cortes-Jacome, C. Angeles-Chavez, E. Lopez-Salinas, G. Ferrat, J. Navarrete, J. Escobar, J. Phys. Chem. C. 111, 10799 (2007)

    Article  CAS  Google Scholar 

  54. S.S. Muniandy, N.H.M. Kaus, Z.T. Jiang, M. Altarawneh, H.L. Lee, RSC Adv. 7, 48083 (2017)

    Article  CAS  Google Scholar 

  55. D. Wang, B. Yu, F. Zhou, C. Wang, W. Liu, Mater. Chem. Phys. 113, 602 (2009)

    Article  CAS  Google Scholar 

  56. M. You, T.G. Kim, Y.M. Sung, Cryst. Growth Des. 10, 983 (2010)

    Article  CAS  Google Scholar 

  57. Z. He, Q. Cai, H. Fang, G. Situ, J. Qiu, S.Song, J. Chen, J. Environ. Sci. 25, 2460 (2013)

    Article  CAS  Google Scholar 

  58. Y. Zhao, C.Z. Li, X. H. Liu, F. Gu, H.B. Jiang, W. Shao, L. Zhang, Y. He, Mater. Lett. 61, 79 (2007)​

    Article  CAS  Google Scholar 

  59. A. Nawaz, Res. Chem. Intermed. 46, 2731 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Science and Engineering Research Board, Department of Science and Technology (DST-SERB) under grant code IMP/2019/000286.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pichiah Saravanan.

Ethics declarations

Competing Interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nawaz, A., Saravanan, P. Significance of rod shape transformation of tetrahedral TiO2 under thermal influence for enhanced solar photocatalysis. Res Chem Intermed 47, 2339–2355 (2021). https://doi.org/10.1007/s11164-021-04407-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-021-04407-9

Keywords

Navigation