Skip to main content
Log in

Effect of Rol Transgenes, IAA, and Kinetin on Starch Content and the Size of Starch Granules in Tubers of In Vitro Potato Plants

  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Stem cuttings were produced from Solanum tuberosum L., cv. Desiree, plants and their transgenic forms harboring rolB and rolC genes from Agrobacterium rhizogenes. Plants were cultured on hormone-free Murashige and Skoog nutrient medium (MS) and on MS supplemented with IAA or kinetin. In microtubers developed on these cuttings, we estimated the content of starch and the number and size of starch granules. Expression of rol genes changed these indices: in tubers of rolC transformants, a greater number of small granules were produced, whereas in tubers of rolB transformants, a fewer number of large granules were developed as compared with wild-type plants. Expression of rol genes did not affect starch content during the first three weeks of cutting culturing but increased it by 15–30% in five-week-old tubers. IAA addition to MS medium increased starch content and the size of starch granules in control plants and rolB tubers by 10–30%, whereas kinetin did not exert any significant influence. The effects of rol transgenes on the initiation and termination of starch granule development are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Cwt :

wild-type control plants

MS:

Murashige and Skoog nutrient medium

REFERENCES

  1. Frommer, W.B. and Sonnewald, U., Molecular Analysis of Carbon Partition in Solanum Species, J. Exp. Bot., 1995, vol. 46, pp. 587–607.

    CAS  Google Scholar 

  2. Katz, F.R., Production and Industrial Use, Biotechnology and Food Ingredients, Goldberg, J. and Williams, R., Eds., New York: Van Nostrand Reinhold, 1991, pp. 315–326.

    Google Scholar 

  3. Fernie, A.R., Willmitzer, L., and Trethewey, R.N., Sucrose to Starch: A Transition in Molecular Plant Physiology, Trends Plant Sci., 2002, vol. 7, pp. 35–41.

    Article  PubMed  CAS  Google Scholar 

  4. Smith, A.M., Denyer, K., and Martin, C., The Synthesis of the Starch Granule, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1997, vol. 48, pp. 67–87.

    Article  PubMed  CAS  Google Scholar 

  5. Aksenova, N.P., Konstantinova, T.N., Golyanovskaya, S.A., Kossmann, I., Willmitzer, L., and Romanov, G.A., Transformed Potato Plants as a Model for Studying the Hormonal and Carbohydrate Regulation of Tuberization, Fiziol. Rast. (Moscow), 2000, vol. 47, pp. 420–430 (Russ. J. Plant Physiol., Engl. Transl., pp. 370–379).

    Google Scholar 

  6. Gukasyan, I.A., Aksenova, N.P., Konstantinova, T.N., Golyanovskaya, S.A., Grishunina, E.V., and Romanov, G.A., Agrobacterial Rol-Genes Change the Size of Starch Granules in Microtubers of Transformed Potato (Solanum tuberosum L.), Dokl. Akad. Nauk, 2001, vol. 380, pp. 708–710.

    CAS  Google Scholar 

  7. Schmulling, T., Schell, J., and Spena, A., Single Genes from Agrobacterium rhizogenes Influence Plant Development, EMBO J., 1988, vol. 7, pp. 2621–2629.

    PubMed  CAS  Google Scholar 

  8. Faiss, M., Strnad, M., Redig, P., Dolezal, K., Hanus, J., and van Onckelen, H., Chemically Induced Expression of the rolC Encoded β-Glucuronidase in Transgenic Tobacco Plants and Analyses of Cytokinin Metabolism: rolC Does Not Hydrolyse Endogenous Cytokinin Glucosides in Plants, Plant J., 1996, vol. 10, pp. 33–46.

    Article  CAS  Google Scholar 

  9. Mingo-Castel, A.M., Young, R.E., and Smith, O.E., Kinetin Induced Tuberization of Potato In Vitro: On the Mode of Action of Kinetin, Plant Cell Physiol., 1976, vol. 17, pp. 557–570.

    CAS  Google Scholar 

  10. Puzina, T.I. and Kirillova, I.G., Free Phytohormone Gradients in Potato Stem as Related to Tuber Formation, Fiziol. Rast. (Moscow), 1996, vol. 43, pp. 915–919 (Russ. J. Plant Physiol., Engl. Transl., pp. 790–794).

    Google Scholar 

  11. Borzenkova, R.A., Sobyanina, E.A., Pozdeeva, A.A., and Yashkov, M.Yu., Effect of Phytohormones on Starch-Synthesizing Capacity in Growing Potato Tubers, Fiziol. Rast. (Moscow), 1998, vol. 45, pp. 557–566 (Russ. J. Plant Physiol., Engl. Transl., pp. 472–480).

    Google Scholar 

  12. Ehness, R. and Roitsch, T., Co-ordinated Induction of mRNAs for Extracellular Invertase and Glucose Transporter in Chenopodium rubrum by Cytokinins, Plant J., 1997, vol. 11, pp. 539–548.

    Article  PubMed  CAS  Google Scholar 

  13. Romanov, G.A., Konstantinova, T.N., Sergeeva, L.I., Golyanovskaya, S.A., Kossmann, J., Willmitzer, L., Schmulling, T., and Aksenova, N.P., Morphology and Tuber Formation of In Vitro Grown Potato Plants Harboring the Yeast Invertase Gene and/or rolC Gene, Plant Cell Rep., 1998, vol. 18, pp. 317–324.

    Article  Google Scholar 

  14. Pisarenko, N.F., Methods for Determination of Starch and Some Polysacharides in Plant Cell Cultures, Biokhimicheskie metody v fiziologii rastenii (Biochemical Methods in Plant Physiology), Moscow: Nauka, 1971, pp. 35–47.

    Google Scholar 

  15. Borzenkova, R.A. and Borovkova, M.P., Developmental Patterns of Phytohormone Content in the Cortex and Pith of Potato Tubers as Related to Their Growth and Starch Content, Fiziol. Rast. (Moscow), 2003, vol. 50, pp. 129–135 (Russ. J. Plant Physiol., Engl. Transl., pp. 119–124).

    Google Scholar 

  16. Gukasyan, I.A., Aksenova, N.P., Konstantinova, T.N., Golyanovskaya, S.A., Grishunina, E.V., and Romanov, G.A., Anatomical Structure of Microtubers from rolB and rolC Potato Transformants, Vestn. Bashkirskogo Un-ta, 2001, no. 2, pp. 35–37.

  17. Lloyd, J.R., Springer, F., Buleon, A., Muller-Rober, B., Willmitzer, L., and Kossmann, J., The Influence of Alterations in ADP-Glucose Pyrophosphorylase Activities on Starch Structure and Composition in Potato Tubers, Planta, 1999, vol. 209, pp. 230–238.

    Article  PubMed  CAS  Google Scholar 

  18. Hofvander, P., Andersson, M., Larsson, C.T., and Larsson, H., Field Performance and Starch Characteristics of High-Amylose Potatoes Obtained by Antisence Gene Targeting of Two Branching Enzymes, Plant Biotech. J., 2004, vol. 2, pp. 311–320.

    CAS  Google Scholar 

  19. Gerrits, N., Turk, S., van Dun, K., Hulleman, S., Visser, R., Weisbeek, P., and Smeekens, S., Sucrose Metabolism in Plastids, Plant Physiol., 2001, vol. 125, pp. 926–934.

    Article  PubMed  CAS  Google Scholar 

  20. Jenner, C.F., Storage of Starch, Encyclopedia of Plant Physiology, vol. 13A, Pirson, A. and Zimmerman, M.H., Eds., Berlin: Springer-Verlag, 1982, pp. 700–737.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fiziologiya Rastenii, Vol. 52, No. 6, 2005, pp. 913–918.

Original Russian Text Copyright © 2005 by Gukasyan, Golyanovskaya, Grishunina, Konstantinova, Aksenova, Romanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gukasyan, I.A., Golyanovskaya, S.A., Grishunina, E.V. et al. Effect of Rol Transgenes, IAA, and Kinetin on Starch Content and the Size of Starch Granules in Tubers of In Vitro Potato Plants. Russ J Plant Physiol 52, 809–813 (2005). https://doi.org/10.1007/s11183-005-0119-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11183-005-0119-1

Key words

Navigation