Skip to main content
Log in

Formation of Venus, Earth and Mars: Constrained by Isotopes

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Here we discuss the current state of knowledge of terrestrial planet formation from the aspects of different planet formation models and isotopic data from 182Hf-182W, U-Pb, lithophile-siderophile elements, 48Ca/44Ca isotope samples from planetary building blocks, recent reproduction attempts from 36Ar/38Ar, 20Ne/22Ne, 36Ar/22Ne isotope ratios in Venus’ and Earth’s atmospheres, the expected solar 3He abundance in Earth’s deep mantle and Earth’s D/H sea water ratios that shed light on the accretion time of the early protoplanets. Accretion scenarios that can explain the different isotope ratios, including a Moon-forming event ca. 50 Myr after the formation of the Solar System, support the theory that the bulk of Earth’s mass (≥80%) most likely accreted within 10–30 Myr. From a combined analysis of the before mentioned isotopes, one finds that proto-Earth accreted most likely a mass of 0.5–0.6 \(M\)Earth within the first ≈3–4.5 Myr, the approximate lifetime of the protoplanetary disk. For Venus, the available atmospheric noble gas data are too uncertain for constraining the planet’s accretion scenario accurately. However, from the available imprecise Ar and Ne isotope measurements, one finds that proto-Venus could have grown to a mass of up to 0.85–1.0 \(M\)Venus before the disk dissipated. Classical terrestrial planet formation models have struggled to grow large planetary embryos, or even cores of giant planets, quickly from the tiniest materials within the typical lifetime of protoplanetary disks. Pebble accretion could solve this long-standing time scale controversy. Pebble accretion and streaming instabilities produce large planetesimals that grow into Mars-sized and larger planetary embryos during this early accretion phase. The later stage of accretion can be explained well with the Grand-Tack model as well as the annulus and depleted disk models. The relative roles of pebble accretion and planetesimal accretion/giant impacts are poorly understood and should be investigated with N-body simulations that include pebbles and multiple protoplanets. To summarise, different isotopic dating methods and the latest terrestrial planet formation models indicate that the accretion process from dust settling, planetesimal formation, and growth to large planetary embryos and protoplanets is a fast process that occurred to a great extent in the Solar System within the lifetime of the protoplanetary disk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • C.B. Agnor, R.M. Canup, H.F. Levison, On the character and consequences of large impacts in the late stage of terrestrial planet formation. Icarus 142, 219–237 (1999)

    ADS  Google Scholar 

  • F. Albarède, Volatile accretion history of the terrestrial planets and dynamic implications. Nature 461, 1227–1233 (2009)

    ADS  Google Scholar 

  • C.M.O. Alexander, Quantitative models for the elemental and isotopic fractionations in chondrites: the carbonaceous chondrites. Geochim. Cosmochim. Acta 254, 277–309 (2019a)

    ADS  Google Scholar 

  • C.M.O. Alexander, Quantitative models for the elemental and isotopic fractionations in the chondrites: the noncarbonaceous chondrites. Geochim. Cosmochim. Acta 254, 246–276 (2019b)

    ADS  Google Scholar 

  • C.M.O. Alexander, R. Bowden, M.L. Fogel, K.T. Howard, C.D.K. Herd, L.R. Nittler, The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337, 721–723 (2012)

    ADS  Google Scholar 

  • C.M.O. Alexander, K.D. McKeegan, K. Altwegg, Water reservoirs in small planetary bodies: meteorites, asteroids, and comets. Space Sci. Rev. 214, 36 (2018)

    ADS  Google Scholar 

  • C.J. Allègre, G. Manhès, C. Göpel, The major differentiation of the Earth at ∼4.45 Ga. Earth Planet. Sci. Lett. 267, 386–398 (2008)

    ADS  Google Scholar 

  • K. Altwegg, H. Balsiger, A. Bar-Nun, J.J. Berthelier, A. Bieler, P. Bochsler, C. Briois, U. Calmonte, M. Combi, J. De Keyser, P. Eberhardt, B. Fiethe, S. Fuselier, S. Gasc, T.I. Gombosi, K.C. Hansen, M. Hässig, A. Jäckel, E. Kopp, A. Korth, L. LeRoy, U. Mall, B. Marty, O. Mousis, E. Neefs, T. Owen, H. Rème, M. Rubin, T. Sémon, C.-Y. Tzou, H. Waite, P. Wurz, 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. Science 347(6220), 1261952 (2015). https://doi.org/10.1126/science.1261952

    Article  Google Scholar 

  • E. Asphaug, Impact origin of the Moon. Annu. Rev. Earth Planet. Sci. 42, 551–578 (2014)

    ADS  Google Scholar 

  • S.K. Atreya, J.B. Pollack, M.S. Matthews, Origin and evolution of planetary and satellite atmospheres origin and evolution of planetary and satellite atmospheres (University of Arizona Press, Tucson, 1989). 881 pp. ISBN 978-0-8165-1105-1

    Google Scholar 

  • G. Avice, B. Marty, Perspectives on atmospheric evolution from noble gas and nitrogen isotopes on Earth, Mars & Venus. Space Sci. Rev. 216, 36 (2020). https://doi.org/10.1007/s11214-020-00655-0. 2020

    Article  ADS  Google Scholar 

  • G. Avice, B. Marty, R. Burges, The origin and degassing history of the Earth’s atmosphere revealed by Archean xenon. Nat. Commun. 8, 15455 (2017)

    ADS  Google Scholar 

  • M. Barboni, P. Boehnke, B. Keller, I.E. Kohl, B. Schoene, E.D. Young, K.D. McKeegan, Early formation of the Moon 4.51 billion years ago. Sci. Adv. 3, e1602365 (2017)

    ADS  Google Scholar 

  • M.R. Benedikt, M. Scherf, H. Lammer, E. Marcq, P. Odert, M. Leitzinger, N.V. Erkaev, Escape of rock-forming volatile elements and noble gases from planetary embryos. Icarus 347, 113772 (2020)

    Google Scholar 

  • V.C. Bennett, A.D. Brandon, A.P. Nutman, Coupled 142Nd–143Nd isotopic evidence for Hadean mantle dynamics. Science 318, 1907–1910 (2007)

    ADS  Google Scholar 

  • K. Bermingham, E. Füri, K. Lodders, B. Marty, Chemical and isotopic evolution of the early Solar System. Space Sci. Rev. 216, 133 (2020). https://doi.org/10.1007/s11214-020-00748-w, this journal

    Article  ADS  Google Scholar 

  • T. Birnstiel, M. Fang, A. Johansen, Dust evolution and the formation of planetesimals. Space Sci. Rev. 205, 41–45 (2016)

    ADS  Google Scholar 

  • B. Bitsch, A. Izidoro, A. Johansen, S.N. Raymond, A. Morbidelli, M. Lambrechts, S. Jacobson, Formation of planetary systems by pebble accretion and migration: growth f gas giants. Astron. Astrophys. 623, A88 (2019)

    ADS  Google Scholar 

  • J. Bollard, J.N. Connelly, M.J. Whitehouse, E.A. Pringle, L. Bonal, J.K. Jørgensen, Å. Nordlund, F. Moynier, M. Bizzarro, Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules. Sci. Adv. 3, 1–9 (2017)

    Google Scholar 

  • M.A. Bouhifd, A.P. Jephcoat, Convergence of Ni and Co metal-silicate partition co-efficients in the deep magma-ocean and coupled silicon-oxygen solubility in iron melts at high pressures. Earth Planet. Sci. Lett. 307, 341–348 (2011)

    ADS  Google Scholar 

  • M. Boyet, R.W. Carlson, 142nd evidence for early (>4.53 Ga) global differentiation of the silicate Earth. Science 309, 576–581 (2005)

    ADS  Google Scholar 

  • M. Boyet, J. Blichert-Toft, M. Rosing, M. Storey, P. Telouk, F. Albarede, 142Nd evidence for early Earth differentiation. Earth Planet. Sci. Lett. 214, 427–442 (2003)

    ADS  Google Scholar 

  • R. Brasser, The formation of Mars: building blocks and accretion time scale. Space Sci. Rev. 174, 11–25 (2013)

    ADS  Google Scholar 

  • R. Brasser, M.H. Lee, Tilting Saturn without tilting Jupiter: constraints on giant planet migration. Astron. J. 150, 157 (2015)

    ADS  Google Scholar 

  • R. Brasser, A. Morbidelli, R. Gomes, K. Tsiganis, H.-F. Levison, Constructing the secular architecture of the solar system II: the terrestrial planets. Astron. Astrophys. 507, 1053–1065 (2009)

    ADS  Google Scholar 

  • R. Brasser, S. Matsumura, S. Ida, S.J. Mojzsis, S.C. Werner, Analysis of terrestrial planet formation by the grand tack model: system architecture and tack location. Astrophys. J. 821, 75–93 (2016)

    ADS  Google Scholar 

  • R. Brasser, S.J. Mojzsis, S. Matsumura, S. Ida, The cool and distant formation of Mars. Earth Planet. Sci. Lett. 468, 85–93 (2017)

    ADS  Google Scholar 

  • R. Brasser, N. Dauphas, S.J. Mojzsis, Jupiter’s influence on the building blocks of Mars and Earth. Geophys. Res. Lett. 45, 5908–5917 (2018)

    ADS  Google Scholar 

  • R. Brasser, S. Matsumura, S. Ida, S.J. Moizsis, S.C. Werner, Analysis of terrestrial planet formation by the Grand Tack model: system architecture and tack location. Astrophys. J. 821, 75 (2019)

    ADS  Google Scholar 

  • A. Caracausi, G. Avice, P.G. Burnard, E. Füri, B. Marty, Chondritic xenon in the Earth’s mantle. Nature 533, 82–85 (2016)

    ADS  Google Scholar 

  • R.W. Carlson, Earth’s building blocks. Nature 541, 468–469 (2017)

    ADS  Google Scholar 

  • R.W. Carlson, R. Brasser, Q.-Z. Yin, M. Fischer-Gödde, L. Qin, Feedstocks of the terrestrial planets. Space Sci. Rev. 214, 121 (2018)

    ADS  Google Scholar 

  • G. Caro, B. Bourdon, J.-L. Birck, S. Moorbath, 146Sm–142Nd from Isua metamorphosed sediments for early differentiation of the Earth’s mantle. Nature 423, 428–431 (2003)

    ADS  Google Scholar 

  • J.E. Chambers, Making more terrestrial planets. Icarus 152, 205–224 (2001)

    ADS  Google Scholar 

  • J.E. Chambers, G.W. Wetherill, Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions. Icarus 136, 304–327 (1998)

    ADS  Google Scholar 

  • C. Class, S.L. Goldstein, Evolution of helium isotopes in the Earth’s mantle. Nature 436, 1107–1112 (2005)

    ADS  Google Scholar 

  • D.D. Clayton, Nucleosysnthesis in stars, in Proceed. of the 11th Int. Conf. on Cosmic Rays, vol. 5 (1970), pp. 21–39

    Google Scholar 

  • M.S. Clement, N.A. Kaib, S.N. Raymond, J.E. Chambers, K.J. Walsh, The early instability scenario: terrestrial planet formation during the giant planet instability, and the effect of collisional fragmentation. Icarus 321, 778–790 (2019)

    ADS  Google Scholar 

  • J.N. Connelly, M. Schiller, M. Bizzarro, Pb isotope evidence for rapid accretion and differentiation of planetary embryos. Earth Planet. Sci. Lett. 525, 115722 (2019)

    Google Scholar 

  • P. Cresswell, R.P. Nelson, Three-dimensional simulations of multiple protoplanets embedded in a protostellar disc. Astron. Astrophys. 482, 677–690 (2008)

    ADS  Google Scholar 

  • I. Dandouras, M. Blanc, L. Fossati, M. Gerasimov, E.W. Guenther, K.G. Kislyakova, H. Lammer, Y. Lin, B. Marty, S. Rugheimer, C. Sotin, S. Tachibana, P. Wurz, M. Yamauchi, Future missions related to isotope and element measurements. Space Sci. Rev. 216, 121 (2020). https://doi.org/10.1007/s11214-020-00736-0, this journal

    Article  ADS  Google Scholar 

  • G. D’Angelo, F. Marzari, Outward migration of Jupiter and Saturn in evolved gaseous disks. Astrophys. J. 757, 50 (2012)

    ADS  Google Scholar 

  • N. Dauphas, The dual origin of the terrestrial atmosphere. Icarus 165, 326–339 (2003)

    ADS  Google Scholar 

  • N. Dauphas, The isotopic nature of the Earth’s accreting material through time. Nature 541, 521–524 (2017)

    ADS  Google Scholar 

  • N. Dauphas, A. Pourmand, Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473, 489–492 (2011)

    ADS  Google Scholar 

  • F.E. DeMeo, B. Carry, Solar System evolution from compositional mapping of the asteroid belt. Nature 505, 629–634 (2014)

    ADS  Google Scholar 

  • M.J. Drake, K. Righter, Determining the composition of the Earth. Nature 416, 39–44 (2002)

    ADS  Google Scholar 

  • J. Drazkowska, Y. Alibert, B. Moore, Close-in planetesimal formation by pile-up of drifting pebbles. Astron. Astrophys. 594, A105 (2016)

    ADS  Google Scholar 

  • M. Fischer-Gödde, T. Kleine, Ruthenium isotopic evidence for an inner Solar System origin of the late veneer. Nature 541, 525–527 (2017)

    ADS  Google Scholar 

  • L. Fossati, N.V. Erkaev, H. Lammer, P.E. Cubillos, P. Odert, I. Juvan, K.G. Kislyakova, M. Lendl, D. Kubyshkina, S.J. Bauer, Aeronomical constraints to the minimum mass and maximum radius of hot low-mass planets. Astron. Astrophys. 598, 90–99 (2017)

    ADS  Google Scholar 

  • J. Geiss, G. Gloeckler, Abundances of Deuterium and Helium-3 in the protosolar cloud. Space Sci. Rev. 84, 239–250 (1998)

    ADS  Google Scholar 

  • C. Gillmann, E. Chassefière, P. Lognonné, A consistent picture of early hydrodynamic escape of Venus atmosphere explaining present Ne and Ar isotopic ratios and low oxygen atmospheric content. Earth Planet. Sci. Lett. 286, 503–513 (2009)

    ADS  Google Scholar 

  • R. Gomes, H.F. Levison, K. Tsiganis, A. Morbidelli, Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466–469 (2005)

    ADS  Google Scholar 

  • A.N. Halliday, Hf-W chronometry and inner solar system accretion rates. Space Sci. Rev. 92, 355–370 (2000)

    ADS  Google Scholar 

  • A.N. Halliday, Mixing, volatile loss and compositional chance during impact-driven accretion of the Earth. Nature 427, 505–509 (2004)

    ADS  Google Scholar 

  • A.N. Halliday, A young Moon-forming impact at 70–110 million years accompanied by late-stage mixing, core formation and degassing of the Earth. Philos. Trans. - Royal Soc., A 366, 4163–4181 (2008)

    ADS  Google Scholar 

  • A.N. Halliday, D.C. Lee, Tungsten isotopes and the early development of the Earth and Moon. Geochim. Cosmochim. Acta 63, 4157–4179 (1999)

    ADS  Google Scholar 

  • A.N. Halliday, B.J. Wood, The composition and major reservoirs of the Earth around the time of the Moon-forming giant impact, in Treatise on Geophysics: Evolution of the Earth, vol. 9, ed. by D. Stevenson (2007), pp. 13–50. Chap. 9.02

    Google Scholar 

  • A.N. Halliday, B.J. Wood, How did Earth accrete? Science 325, 44–45 (2009)

    Google Scholar 

  • L.J. Hallis, G.R. Huss, K. Nagashima, G.J. Taylor, S.A. Halldórsson, D.R. Hilton, M.J. Mottl, K.J. Meech, Evidence for primordial water in Earth’s deep mantle. Science 350, 795–797 (2015)

    ADS  Google Scholar 

  • B.M.S. Hansen, Formation of the terrestrial planets from a narrow annulus. Astrophys. J. 703, 1131–1140 (2009)

    ADS  Google Scholar 

  • C.L. Harper, S.B. Jacobsen, Evidence from coupled 147Sm-143Nd and 146Sm-142Nd systematics for very early (4.5-Gyr) differentiation of the Earth’s mantle. Nature 360, 728–732 (1992). https://doi.org/10.1038/360728a0

    Article  ADS  Google Scholar 

  • C.L. Harper Jr., S.B. Jacobsen, Noble gases and Earth’s accretion. Science 273, 1814–1818 (1996)

    ADS  Google Scholar 

  • L. Hartmann, N. Calvet, E. Gullbring, P. D’Alessio, Accretion and the evolution of T Tauri disks. Astrophys. J. 495, 385–400 (1998)

    ADS  Google Scholar 

  • C. Hayashi, K. Nakazawa, H. Mizuno, Earth’s melting due to the blanketing effect of the primordial dense atmosphere. Earth Planet. Sci. Lett. 43, 22–28 (1979)

    ADS  Google Scholar 

  • V.S. Heber, H. Baur, P. Bochsler, K.D. McKeegan, M. Neugebauer, D.B. Reisenfeld, R. Wieler, R.C. Wiens, Isotopic mass fractionation of Solar Wind: Evidence from fast and slow Solar Wind collected by the GENESIS mission. Astrophys. J. 759, 121 (2012)

    ADS  Google Scholar 

  • R. Helled, P. Bodenheimer, M. Podolak, A. Boley, F. Meru, S. Nayakshin, J.J. Fortney, L. Mayer, Y. Alibert, A.P. Boss, Giant planet formation, evolution, and internal structure, in Protostars and Planets VI, ed. by H. Beuther, R.S. Klessen, C.P. Dullemond, T. Henning (University of Arizona Press, Tucson, 2013), pp. 643–665

    Google Scholar 

  • M. Honda, I. McDougall, D.B. Patterson, A. Doulgeris, D.A. Clague, Possible solar noble-gas component in Hawaiian basalts. Nature 349, 149–151 (1991)

    ADS  Google Scholar 

  • S. Ida, J. Makino, Scattering of planetesimals by a protoplanet—slowing down the runaway growth. Icarus 106, 210–227 (1993)

    ADS  Google Scholar 

  • M. Ikoma, H. Genda, Constraints on the mass of a habitable planet with water of nebular origin. Astrophys. J. 648, 696–706 (2006)

    ADS  Google Scholar 

  • M. Ikoma, L. Elkins-Tanton, K. Hamano, J. Suckale, Water partitioning in planetary embryos and protoplanets with magma oceans. Space Sci. Rev. 214, 76 (2018)

    ADS  Google Scholar 

  • A. Izidoro, S.N. Raymond, Formation of terrestrial planets, in Handbook of Exoplanets, ed. by H. Deeg, J. Belmonte (Springer, New York, 2018), pp. 2365–2423

    Google Scholar 

  • A. Izidoro, N. Haghighipour, O.C. Winter, M. Tsuchida, Terrestrial planet formation in a protoplanetary disk with a local mass depletion: a successful scenario for the formation of Mars. Astrophys. J. 782, 31 (2014)

    ADS  Google Scholar 

  • A. Izidoro, S.N. Raymond, A. Morbidelli, O.C. Winter, Terrestrial planet formation constrained by Mars and the structure of the asteroid belt. Mon. Not. R. Astron. Soc. 453, 3619–3634 (2015)

    ADS  Google Scholar 

  • A. Izidoro, B. Bitsch, S.N. Raymond, A. Johansen, A. Morbidelli, M. Lambrechts, S.A. Jacobson, Formation of planetary systems by pebble accretion and migration: hot super-Earth systems from breaking compact resonant chains. Astron. Astrophys. (2019), submitted. ArXiv e-prints. arXiv:1902.08772

  • M.G. Jackson, J.G. Konter, T.W. Becker, Primordial helium entrained by the hottest mantle plumes. Nature 542, 340–343 (2017)

    ADS  Google Scholar 

  • S.B. Jacobsen, How old is planet Earth? Science 300, 1513–1514 (2003)

    Google Scholar 

  • S.B. Jacobsen, The Hf-W isotopic system and the origin of the Earth and Moon. Annu. Rev. Earth Planet. Sci. 33, 531–570 (2005)

    ADS  Google Scholar 

  • S.B. Jacobsen, C.L. Harper Jr., Accretion and early differentiation history of the Earth based on extinct radionuclides. Geophys. Monogr. 95, 47–74 (1996)

    Google Scholar 

  • S.B. Jacobsen, M.C. Ranen, M.I. Petaev, J.L. Remo, J.O. O’Connel, D.D. Sasselov, Isotopes as clues to the origin and earliest differentiation history of the Earth. Philos. Trans. - Royal Soc., A 366, 4129–4162 (2008)

    ADS  Google Scholar 

  • S.A. Jacobson, A. Morbidelli, S.N. Raymond, D.P. O’Brien, K.J. Walsh, D.C. Rubie, Highly siderophile elements in Earth’s mantle as a clock for the Moon-forming impact. Nature 508, 84–87 (2014)

    ADS  Google Scholar 

  • E. Jaupart, S. Charnoz, M. Moreira, Primordial atmosphere incorporation in planetary embryos and the origin of Neon in terrestrial planets. Icarus 293, 199–205 (2017)

    ADS  Google Scholar 

  • A. Johansen, M. Lambrechts, Forming planets via pebble accretion. Annu. Rev. Earth Planet. Sci. 45, 359–387 (2017)

    ADS  Google Scholar 

  • A. Johansen, J.S. Oishi, L.M.M. Mac, H. Klahr, T. Henning, A. Youdin, Rapid planetesimal formation in turbulent circumstellar disks. Nature 448, 1022–1025 (2007)

    ADS  Google Scholar 

  • A. Johansen, M.M. Mac Low, P. Lacerda, M. Bizzarro, Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion. Sci. Adv. 1(3), e1500109 (2015)

    ADS  Google Scholar 

  • A. Johansen, T. Ronnet, M. Bizzarro, M. Schiller, M. Lambrechts, Å. Nordlund, H. Lammer, A pebble accretion model for the formation of the terrestrial planets in the Solar System. Sci. Adv. (2020), accepted

  • B.S. Kamber, J.D. Kramers, How well can Pb isotopes date core formation? Nature 444, E1–E2 (2006)

    ADS  Google Scholar 

  • L.H. Kellogg, G.J. Wasserburg, The role of plumes in mantle helium fluxes. Earth Planet. Sci. Lett. 99, 276–289 (1990)

    ADS  Google Scholar 

  • J.B. Kellogg, S.B. Jacobsen, R.J. O’Connell, Modeling lead isotopic heterogeneity in mid-ocean ridge basalts. Earth Planet. Sci. Lett. 262, 328–342 (2007)

    ADS  Google Scholar 

  • T. Kimura, M. Ikoma, Formation of aqua planets with water of nebular origin: Effects of water enrichment on the structure and mass of captured atmospheres of terrestrial planets. MNRAS 496(3), 3755–3766 (2020). https://doi.org/10.1093/mnras/staa1778. arXiv:2006.09068

    Article  ADS  Google Scholar 

  • T. Kleine, R.J. Walker, Tungsten isotopes in planets. Annu. Rev. Earth Planet. Sci. 45, 389–417 (2017)

    ADS  Google Scholar 

  • T. Kleine, C. Munker, K. Mezger, H. Palme, Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry. Nature 418, 952–955 (2002)

    ADS  Google Scholar 

  • T. Kleine, K. Mezger, H. Palme, C. Münker, The W isotope evolution of the bulk silicate Earth: constraints on the timing and mechanisms of core formation and accretion. Earth Planet. Sci. Lett. 228, 109–123 (2004)

    ADS  Google Scholar 

  • T. Kleine, M. Touboul, B. Bourdon, F. Nimmo, K. Mezger, H. Palme, S.B. Jacobsen, Q.-Z. Yin, A.N. Halliday, Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta 73, 5150–5188 (2009)

    ADS  Google Scholar 

  • S. König, C. Münker, S. Hohl, H. Paulik, A.R. Barth, M. Lagos, J. Pfänder, A. Regelous, The Earth’s tungsten budget during mantle melting and crust formation. Geochim. Cosmochim. Acta 75, 2119–2136 (2011)

    ADS  Google Scholar 

  • E. Kokubo, S. Ida, Orbital evolution of protoplanets embedded in a swarm of planetesimals. Icarus 106, 247–257 (1995)

    ADS  Google Scholar 

  • E. Kokubo, S. Ida, On runaway growth of planetesimals. Icarus 123, 180–191 (1996)

    ADS  Google Scholar 

  • E. Kokubo, S. Ida, Oligarchic growth of planetesimals. Icarus 131, 171–178 (1998)

    ADS  Google Scholar 

  • J. Kominami, S. Ida, The effect of tidal interaction with a gas disk on formation of terrestrial planets. Icarus 157, 43–56 (2002)

    ADS  Google Scholar 

  • J. Kominami, S. Ida, Formation of terrestrial planets in a dissipating gas disk with Jupiter and Saturn. Icarus 167, 231–243 (2004). https://doi.org/10.1016/j.icarus.2003.10.005

    Article  ADS  Google Scholar 

  • J. Kominami, H. Tanaka, S. Ida, Orbital evolution and accretion of protoplanets tidally interacting with a gas disk. I. Effects of interaction with planetesimals and other protoplanets. Icarus 178, 540–552 (2005)

    ADS  Google Scholar 

  • T.S. Kruijer, M. Touboul, M. Fischer-Gödde, K.R. Bermingham, R.J. Walker, T. Kleine, Protracted core formation and rapid accretion of protoplanets. Science 344, 1150–1154 (2014)

    ADS  Google Scholar 

  • M. Lambrechts, A. Johansen, Rapid growth of gas-giant cores by pebble accretion. Astron. Astrophys. 544, A32 (2012)

    ADS  Google Scholar 

  • M. Lambrechts, A. Johansen, A. Morbidelli, Separating gas-giant and ice-giant planets by halting pebble accretion. Astron. Astrophys. 572, A35 (2014)

    ADS  Google Scholar 

  • M. Lambrechts, A. Morbidelli, S.A. Jacobsen, A. Johansen, B. Bitsch, A. Izodoro, S.N. Raymond, Formation of planetary systems by pebble accretion and migration. How the radial pebble flux determines a terrestrial-planet or super-Earth growth mode. Astron. Astrophys. 627, A83 (2019)

    ADS  Google Scholar 

  • H. Lammer, A. Stökl, N.V. Erkaev, E.A. Dorfi, P. Odert, M. Güdel, Y.N. Kulikov, K.G. Kislyakova, M. Leitzinger, Origin and loss of nebula-captured hydrogen envelopes from ‘sub’- to ‘super-Earths’ in the habitable zone of Sun-like stars. Mon. Not. R. Astron. Soc. 439, 3225–3238 (2014)

    ADS  Google Scholar 

  • H. Lammer, A.L. Zerkle, S. Gebauer, N. Tosi, L. Noack, M. Scherf, E. Pilat-Lohinger, M. Güdel, J.L. Grenfell, M. Godolt, A. Nikolaou, Origin and evolution of the atmospheres of early Venus, Earth and Mars. Astron. Astrophys. Rev. 26, 2 (2018)

    ADS  Google Scholar 

  • H. Lammer, M. Leitzinger, M. Scherf, P. Odert, C. Burger, D. Kubyshkina, C.P. Johnstone, T. Maindl, C.M. Schäfer, M. Güdel, N. Tosi, A. Nikolaou, E. Marcq, N.V. Erkaev, L. Noak, K.G. Kisylakova, L. Fossati, E. Pilat-Lohinger, F. Ragossnig, E.A. Dorfi, Measured atmospheric 36Ar/38Ar, 20Ne/22Ne, 36Ar/22Ne noble gas isotope and bulk K/U ratios constrain the early evolution of Venus and Earth. Icarus 339, 11351 (2020b)

    Google Scholar 

  • H. Lammer, M. Scherf, H. Kurokawa, Y. Ueno, C. Burger, Z. Leinhard, T. Maindl, C.P. Johnstone, M. Leizinger, M. Benedikt, L. Fossati, B. Marty, B. Fegley, P. Odert, K.G. Kislyakova, Loss and fractionation of noble gas isotopes and moderate volatile elements from planetary embryos and Venus, Earth and Mars early evolution. Space Sci. Rev. 216, 74 (2020a). https://doi.org/10.1007/s11214-020-00701-x, this journal

    Article  ADS  Google Scholar 

  • H.F. Levison, A. Morbidelli, K. Tsiganis, D. Nesvorny, R. Gomes, Late orbital instabilities in the outer planets induced by interaction with a self-gravitating planetesimal disk. Astron. J. 142, 152 (2011)

    ADS  Google Scholar 

  • H.F. Levison, K.A. Kretke, M.J. Duncan, Growing the gas-giant planets by the gradual accumulation of pebbles. Nature 524, 322–324 (2015a)

    ADS  Google Scholar 

  • H.F. Levison, K.A. Kretke, K.J. Walsh, W.F. Bottke, Growing the terrestrial planets from the gradual accumulation of submeter-sized objects. Proc. Natl. Acad. Sci. 112, 14180–14185 (2015b)

    ADS  Google Scholar 

  • J. Li, C. Agee, Geochemistry of mantle–core differentiation at high pressure. Nature 381, 686–689 (1996)

    ADS  Google Scholar 

  • T. Lichtenberg, G.J. Golabek, T.V. Gerya, M.R. Meyer, The effects of short-lived radionuclides and porosity on the early thermo-mechanical evolution of planetesimals. Icarus 274, 350–365 (2016)

    ADS  Google Scholar 

  • T. Lichtenberg, G.J. Golabek, C.P. Dullemond, M. Schöonbächler, T.V. Gerya, M.R. Meyer, Impact splash chondrule formation during planetesimal recycling. Icarus 302, 27–43 (2018)

    ADS  Google Scholar 

  • D.N.C. Lin, J.C.B. Papaloizou, On the tidal interaction between protoplanets and the protoplanetary disk III—orbital migration of protoplanets. Astrophys. J. 309, 846–857 (1986)

    ADS  Google Scholar 

  • S.J. Lock, K.R. Bermingham, R. Parai, M. Boyet, Geochemical constraints on the origin of the Moon and preservation of ancient terrestrial heterogeneities. Space Sci. Rev. 216, 109 (2020). https://doi.org/10.1007/s11214-020-00729-z

    Article  ADS  Google Scholar 

  • E.E. Mamajek, Initial conditions of planet formation: lifetimes of primordial disks. AIP Conf. Proc. 1158, 3–10 (2009)

    ADS  Google Scholar 

  • B. Marty, The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313, 56–66 (2012)

    ADS  Google Scholar 

  • B. Marty, P. Allé, Neon and Argon isotopic constraints on Earth-atmosphere evolution, in Noble Gas Geochem. Cosmochem., ed. by J. Matsuda (Terra Sci. Pub., Tokyo, 1994), pp. 191–204

    Google Scholar 

  • B. Marty, G. Avice, Y. Sano, K. Altwegg, H. Balsiger, M. Hässig, A. Morbidelli, O. Mousis, M. Rubin, Origins of volatile elements (H, C, N, noble gases) on Earth and Mars in light of recent results from the ROSETTA cometary mission. Earth Planet. Sci. Lett. 441, 91–102 (2016)

    ADS  Google Scholar 

  • F. Masset, M. Snellgrove, Reversing type II migration: resonance trapping of a lighter giant protoplanet. Mon. Not. R. Astron. Soc. 320, L55–L59 (2001)

    ADS  Google Scholar 

  • S. Matsumura, R. Brasser, S. Ida, N-body simulations of planet formation via pebble accretion. I. First results. Astron. Astrophys. 607, A67 (2017)

    ADS  Google Scholar 

  • E. Mazor, D. Heymann, E. Anders, Noble gases in carbonaceous chondrites. Geochim. Cosmochim. Acta 34, 781–824 (1970)

    ADS  Google Scholar 

  • W.F. McDonough, Compositional model for the Earth’s core, in Treatise on Geochemistry, vol. 2: The Mantle and Core, ed. by K.K. Turekian H.D. Holland (Elsevier, New York, 2003), pp. 547–568

    Google Scholar 

  • W.F. McDonough, S.-S. Sun, The composition of the Earth. Chem. Geol. 120, 223–253 (1995)

    ADS  Google Scholar 

  • K. Meech, S.N. Raymond, Origin of Earth’s water: sources and constraints, in Planetary Astrobiology, ed. by V. Meadows, G. Arney, D.D. Marais, B. Schmidt (2019), in press. arXiv:1912.04361

    Google Scholar 

  • A. Meibom, D.L. Anderson, N.H. Sleep, R. Frei, C.P. Chamberlain, M.T. Hren, J.L. Wooden, Are high 3He/4He ratios in oceanic basalts an indicator of deep-mantle plume components? Earth Planet. Sci. Lett. 208, 197–204 (2003)

    ADS  Google Scholar 

  • H. Mizuno, K. Nakazawa, C. Hayashi, Dissolution of the primordial rare gases into the molten Earth’s material. Earth Planet. Sci. Lett. 50, 202–210 (1980)

    ADS  Google Scholar 

  • S.J. Mojzsis, R. Brasser, N.M. Kelly, O. Abramov, S.C. Werner, Onset of giant planet migration before 4480 million years ago. Astrophys. J. 881, 44 (2019)

    ADS  Google Scholar 

  • A. Morbidelli, Calcium signals in planetary embryos. Nature 555, 451–452 (2018)

    ADS  Google Scholar 

  • A. Morbidelli, J. Chambers, J.I. Lunine, J.M. Petit, F. Robert, G.B. Valsecchi, K.E. Cyr, Source regions and time scales for the delivery of water to Earth. Meteorit. Planet. Sci. 35, 1309–1320 (2000)

    ADS  Google Scholar 

  • A. Morbidelli, H.F. Levison, K. Tsiganis, R. Gomes, Chaotic capture of Jupiter’s Trojan asteroids in the early Solar System. Nature 435, 462–465 (2005)

    ADS  Google Scholar 

  • A. Morbidelli, R. Brasser, R. Gomes, H.F. Levison, K. Tsiganis, Evidence from the asteroid belt for a violent past evolution of Jupiter’s orbit. Astron. J. 140, 1391–1401 (2010)

    ADS  Google Scholar 

  • A. Morbidelli, J.I. Lunine, D.P. OˋBrien, S.N. Raymond, K.J. Walsh, Building terrestrial planets. Annu. Rev. Earth Planet. Sci. 40, 251–275 (2012)

    ADS  Google Scholar 

  • A. Morbidelli, B. Bitsch, A. Crida, M. Gounelle, T. Guillot, S. Jacobson, A. Johansen, M. Lamnrechts, E. Lega, Fossilized condensation lines in the Solar System protoplanetary disk. Icarus 267, 368–376 (2016). https://doi.org/10.1016/j.icarus.2015.11.027

    Article  ADS  Google Scholar 

  • M.A. Moreira, S. Charnoz, The origin of the neon isotopes in chondrites and on Earth. Earth Planet. Sci. Lett. 433, 249–256 (2016)

    ADS  Google Scholar 

  • M.A. Moreira, M.D. Kurz, Noble Gases as Tracers of Mantle Processes and Magmatic Degassing, in The Noble Gases as Geochemical Tracers. Advances in Isotope Geochemistry, ed. by P. Burnard (Springer, Berlin, 2013). https://doi.org/10.1007/978-3-642-28836-4_12

    Chapter  Google Scholar 

  • S. Mukhopadhyay, Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature 486, 101–104 (2012)

    ADS  Google Scholar 

  • D. Nesvorný, Jumping Neptune can explain the Kuiper belt kernel. Astron. J. 150, 68 (2015a)

    ADS  Google Scholar 

  • D. Nesvorný, Evidence for slow migration of Neptune from the inclination distribution of Kuiper belt objects. Astron. J. 150, 73 (2015b)

    ADS  Google Scholar 

  • D. Nesvorný, A. Morbidelli, Statistical study of the early Solar System’s instability with four, five, and six giant planets. Astron. J. 144, 117 (2012)

    ADS  Google Scholar 

  • H.E. Newsom, W/Hf Fractionation in Chondrites and the Earth: Constraints on timing of core formation. Lunar Planet. Sci. 27, 957 (1996)

    ADS  Google Scholar 

  • D.P. O’Brien, A. Morbidelli, H.F. Levison, Terrestrial planet formation with strong dynamical friction. Icarus 184, 39–58 (2006)

    ADS  Google Scholar 

  • D.P. O’Brien, K.J. Walsh, A. Morbidelli, S.N. Raymond, A.M. Mandell, Water delivery and giant impacts in the ‘Grand Tack’ scenario. Icarus 239, 74–84 (2014)

    ADS  Google Scholar 

  • P. Odert, H. Lammer, N.V. Erkaev, A. Nikolaou, H.I.M. Lichtenegger, C.P. Johnstone, K.G. Kislyakova, M. Leitzinger, N. Tosi, Escape and fractionation of volatiles and noble gases from Mars-sized planetary embryos and growing protoplanets. Icarus 307, 327–346 (2018)

    ADS  Google Scholar 

  • C. O’Neill, H.St.C. O’Neill, A.M. Jellinek, On the distribution and variation of radioactive heat producing elements within meteorites, the Earth and planets. Space Sci. Rev. (2020). https://doi.org/10.1007/s11214-020-00656-z. this journal

    Article  Google Scholar 

  • C.W. Ormel, H.H. Klahr, The effect of gas drag on the growth of protoplanets. Analytical expressions for the accretion of small bodies in laminar disks. Astron. Astrophys. 520, A43 (2010)

    ADS  Google Scholar 

  • J.E. Owen, Y. Wu, Atmospheres of low-mass planets: the “boil-off”. Astrophys. J. 817, 107 (2016)

    ADS  Google Scholar 

  • S.-J. Paardekooper, C. Baruteau, W. Kley, A torque formula for non-isothermal type I planetary migration—II. Unsaturated horseshoe drag. Mon. Not. R. Astr. Soc. 410, 293–303 (2011)

    ADS  Google Scholar 

  • K. Pahlevan, L. Schaefer, M.M. Hirschmann, Hydrogen isotopic evidence for early oxidation of silicate Earth. Earth Planet. Sci. Lett. 526, 115770 (2019)

    Google Scholar 

  • S.W. Parman, Helium isotopic evidence for episodic mantle melting and crustal growth. Nature 446, 900–903 (2007)

    ADS  Google Scholar 

  • R.O. Pepin, On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus 92, 2–79 (1991)

    ADS  Google Scholar 

  • R.O. Pepin, Evolution of Earth’s noble gases: consequences of assuming hydrodynamic loss driven by giant impact. Icarus 126, 148–156 (1997)

    ADS  Google Scholar 

  • S. Péron, M. Moreira, A. Colin, L. Arbaret, B. Putlitz, M.D. Kurz, Neon isotopic composition of the mantle constrained by single vesicle analyses. Earth Planet. Sci. Lett. 449, 145–154 (2016)

    ADS  Google Scholar 

  • A. Pierens, S.N. Raymond, D. Nesvorny, A. Morbidelli, Outward migration of Jupiter and Saturn in 3:2 or 2:1 resonance in radiative disks: implications for the Grand Tack and Nice models. Astrophys. J. 795, L11 (2014)

    ADS  Google Scholar 

  • D. Porcelli, D. Woolum, P. Cassen, Deep Earth rare gases: initial inventories, capture from the solar nebula, and losses during Moon formation. Earth Planet. Sci. Lett. 193, 237–251 (2001)

    ADS  Google Scholar 

  • R.J. Poreda, H. Craig, He and Sr isotopes in the Lau Basin mantle: depleted and primitive mantle components. Earth Planet. Sci. Lett. 113, 487–493 (1992)

    ADS  Google Scholar 

  • A. Raquin, M. Moreira, Atmospheric 38Ar/36Ar in the mantle: implications for the nature of the terrestrial parent bodies. Earth Planet. Sci. Lett. 287, 551–558 (2009)

    ADS  Google Scholar 

  • S.N. Raymond, A. Izidoro, The empty primordial asteroid belt. Sci. Adv. 3, 1–6 (2017a)

    Google Scholar 

  • S.N. Raymond, A. Izidoro, Origin of water in the inner Solar System: planetesimals scattered inward during Jupiter and Saturn’s rapid gas accretion. Icarus 297, 134–148 (2017b)

    ADS  Google Scholar 

  • S.N. Raymond, A. Morbidelli, Planet formation: key mechanisms and global models, in Lecture Notes of the 3rd Advanced School on Exoplanetary Science, ed. by M. Biazzo, B. Sozzetti (2020). 100 pp. arXiv:2002.05756

    Google Scholar 

  • S.N. Raymond, T. Quinn, J.I. Lunine, Making other Earths: dynamical simulations of terrestrial planet formation and water delivery. Icarus 168, 1–17 (2004)

    ADS  Google Scholar 

  • S.N. Raymond, T. Quinn, J.I. Lunine, High-resolution simulations of the final assembly of Earth-like planets I. Terrestrial accretion and dynamics. Icarus 183, 265–282 (2006)

    ADS  Google Scholar 

  • S.N. Raymond, D.P. O’Brien, A. Morbidelli, N. Kaib, Building the terrestrial planets: constrained accretion in the inner Solar System. Icarus 203, 644–662 (2009)

    ADS  Google Scholar 

  • K. Righter, M.J. Drake, Metal/silicate equilibrium in the early Earth—new constraints from the volatile moderately siderophile elements Ga, Cu, P, and Sn. Geochim. Cosmochim. Acta 64, 3581–3597 (2020)

    ADS  Google Scholar 

  • K. Righter, C. King, L. Danielson, K. Pando, C.T. Lee, Experimental determination of the metal/silicate partition coefficient of Germanium: implications for core and mantle differentiation. Earth Planet. Sci. Lett. 304, 379–388 (2011)

    ADS  Google Scholar 

  • F. Robert, D. Gautier, B. Dubrulle, The Solar System D/H ratio: observations and theories. Space Sci. Rev. 92, 201–224 (2012)

    ADS  Google Scholar 

  • R.A. Robie, B.S. Hemmingway, J.R. Fisher, Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures. Geol. Surv. Bull., pp. 1452–1452 (1978)

  • D.C. Rubie, H.J. Melosh, J.E. Reid, C. Liebske, K. Righter, Mechanisms of metal-silicate equilibration in the terrestrial magma ocean. Earth Planet. Sci. Lett. 205, 239–255 (2003)

    ADS  Google Scholar 

  • D.C. Rubie, F. Nimmo, H.J. Melosh, Formation of the Earth’s core., in Treatise on Geophysics, vol. 9 (2007), pp. 51–90. Chap. 9.03

    Google Scholar 

  • J.F. Rudge, T. Kleine, B. Bourdon, Broad bounds on Earth’s accretion and core formation constrained by geochemical models. Nat. Geosci. 3, 439–443 (2010)

    ADS  Google Scholar 

  • V.S. Safronov, Evolution of the Protoplanetary Cloud and Formation of the Earth and Planets (Israel Program for Scientific Translations, Keter Publishing House, Jerusalem, 1969), p. 212. Translated from Russian

    Google Scholar 

  • H. Samuel, C.G. Farnetani, Thermochemical convection and helium concentrations in mantle plumes. Earth Planet. Sci. Lett. 207, 9–56 (2003). https://doi.org/10.1016/S0012-821X(02)01125-1

    Article  ADS  Google Scholar 

  • S. Sasaki, K. Nakazawa, Did a primary solar-type atmosphere exist around the proto-Earth? Icarus 85, 21–42 (1990). https://doi.org/10.1016/0019-1035(90)90101-E

    Article  ADS  Google Scholar 

  • U. Schaltegger, A.K. Schmitt, M.S.A. Horstwood, U-Th-Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: recipes, interpretations, and opportunities. Chem. Geol. 401, 89–110 (2015)

    ADS  Google Scholar 

  • M. Schiller, M. Bizzarro, V.A. Fernandes, Isotopic evolution of the protoplanetary disk and the building blocks of Earth and the Moon. Nature 555, 507–510 (2018)

    ADS  Google Scholar 

  • M. Schiller, M. Bizzarro, J. Siebert, Iron isotope evidence for very rapid accretion and differentiation oft He proto-Earth. Sci. Adv. 6, 1–7 (2020)

    Google Scholar 

  • P.A. Sossi, S. Klemme, H.S.C. O’Neill, J. Berndt, F. Moynier, Evaporation of moderately volatile elements from silicate melts: experiments and theory. Geochim. Cosmochim. Acta 260, 204–231 (2019)

    ADS  Google Scholar 

  • A. Stökl, E.A. Dorfi, C.P. Johnstone, H. Lammer, Dynamical accretion of primordial atmospheres around planets with masses between 0.1 and 5 \(M\)Earth in the habitable zone. Astrophys. J. 825, 86 (2016)

    ADS  Google Scholar 

  • H. Tanaka, W.R. Ward, Three-dimensional interaction between a planet and an isothermal gaseous disk. II. Eccentricity waves and bending waves. Astrophys. J. 602, 388–395 (2004)

    ADS  Google Scholar 

  • K.K. Tanaka, H. Tanaka, K. Nakazawa, Non-equilibrium condensation in a primordial solar nebula: formation of refractory metal nuggets. Icarus 169, 197–207 (2002)

    ADS  Google Scholar 

  • H. Tang, N. Dauphas, 60Fe-60Ni Chronology of core formation in Mars. Earth Planet. Sci. Lett. 390, 264–274 (2014)

    ADS  Google Scholar 

  • F. Tera, D.A. Papanastassiou, G.J. Wasserburg, Isotopic evidence for a terminal lunar cataclysm. Earth Planet. Sci. Lett. 22, 1–21 (1974)

    ADS  Google Scholar 

  • M.M. Thiemens, P. Sprung, R.O.C. Fonseca, F.P. Leitzke, C. Münker, Early Moon formation inferred from hafnium-tungsten systematics. Nat. Geosci. 12, 696–700 (2019)

    ADS  Google Scholar 

  • E.W. Thommes, M.J. Duncan, H.F. Levison, The formation of Uranus and Neptune in the Jupiter-Saturn region of the Solar System. Nature 402, 635–638 (1999)

    ADS  Google Scholar 

  • S. Timmerman, M. Honda, A.D. Burnham, Y. Amelin, S. Woodland, D.G. Pearson, A.L. Jaques, C. Le Losq, V.C. Bennett, G.P. Bulanova, C.B. Smith, J.W. Harris, E. Tohver, Primordial and recycled helium isotope signatures in the mantle transition zone. Science 365, 692–694 (2019)

    ADS  Google Scholar 

  • M. Touboul, T. Kleine, B. Bourdon, H. Palme, R. Wieler, Late formation and prolonged differentiation of the Moon inferred fromWisotopes in lunar metals. Nature 450, 1206–1209 (2007)

    ADS  Google Scholar 

  • K. Tsiganis, R. Gomes, A. Morbidelli, H.F. Levison, Origin of the orbital architecture of the giant planets of the Solar System. Nature 435, 459–461 (2005)

    ADS  Google Scholar 

  • L. Tu, C.P. Johnstone, M. Güdel, H. Lammer, The extreme ultraviolet and X-ray Sun in time: high-energy evolutionary tracks of a solar-like star. Astron. Astrophys. 577, L3 (2015)

    ADS  Google Scholar 

  • R.D. Van der Hilst, S. Widiyantoro, E.R. Engdahl, Evidence for deep mantle circulation from global tomography. Nature 386, 578–584 (1997)

    ADS  Google Scholar 

  • J. Wade, B.J. Wood, Core formation and the oxidation state of the Earth. Earth Planet. Sci. Lett. 236, 78–95 (2005)

    ADS  Google Scholar 

  • C.M. Wai, J.T. Wasson, Nebular condensation of moderately volatile elements and their abundances in ordinary chondrites. Earth Planet. Sci. Lett. 36, 1–13 (1977). https://doi.org/10.1016/0012-821X(77)90182-0

    Article  ADS  Google Scholar 

  • K.J. Walsh, H.F. Levison, Terrestrial planet formation from an annulus. Astron. J. 152, 68 (2016)

    ADS  Google Scholar 

  • K.J. Walsh, A. Morbidelli, S.N. Raymond, D.P. O’Brien, A.M. Mandell, A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011)

    ADS  Google Scholar 

  • Z. Wang, H. Becker, Ratios of S, Se and Te in silicate Earth require a volatile-rich late veneer. Nature 499, 328–331 (2013). https://doi.org/10.1038/nature12285.

    Article  ADS  Google Scholar 

  • H. Wang, B.P. Weiss, X.N. Bai, B.G. Downey, J. Wang, C. Suavet, R.R. Fu, M.E. Zucolotto, Lifetime of the solar nebula constrained by meteorite paleomagnetism. Science 355, 623–627 (2017)

    ADS  Google Scholar 

  • P.H. Warren, Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: a subordinate role for carbonaceous chondrites. Earth Planet. Sci. Lett. 311, 93–100 (2011)

    ADS  Google Scholar 

  • S.J. Weidenschilling, The distribution of mass in the planetary system and solar nebula. Astrophys. Space Sci. 51, 153–158 (1977)

    ADS  Google Scholar 

  • G.W. Wetherill, Formation of the terrestrial planets. Annu. Rev. Astron. Astrophys. 18, 77–113 (1980)

    ADS  Google Scholar 

  • G.W. Wetherill, G.R. Stewart, Accumulation of a swarm of small planetesimals. Icarus 77, 330–357 (1989)

    ADS  Google Scholar 

  • C.D. Williams, S. Mukhopadhyay, Capture of nebular gases during Earth’s accretion is preserved in deep-mantle neon. Nature 565, 78–81 (2019)

    ADS  Google Scholar 

  • J.M.Y. Woo, R. Brasser, S. Matsumura, S.J. Mojzsis, S. Ida, The curious case of Mars’ formation. Astron. Astrophys. 617, A17 (2018)

    ADS  Google Scholar 

  • B.J. Wood, A.N. Halliday, Cooling of the Earth and core formation after the giant impact. Nature 437, 1345–1348 (2005)

    ADS  Google Scholar 

  • Q. Yin, S.B. Jacobsen, Does U-Pb date Earth’s core formation? Nature 444, E1 (2006)

    Google Scholar 

  • Q. Yin, S.B. Jacobsen, K. Yamashita, J. Blichert-Toft, P. Télouk, F. Albarède, A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites. Nature 418, 949–952 (2002)

    ADS  Google Scholar 

  • R. Yokochi, B. Marty, A determination of the neon isotopic composition of the deep mantle. Earth Planet. Sci. Lett. 225, 77–88 (2004)

    ADS  Google Scholar 

  • E.D. Young, A. Shahar, F. Nimmo, H.E. Schlichting, E.A. Schauble, H. Tang, J. Labidi, Near-equilibrium isotope fractionation during planetesimal evaporation. Icarus 323, 1–15 (2019)

    ADS  Google Scholar 

  • G. Yu, S.B. Jacobsen, Fast accretion of the Earth with a late Moon-forming giant impact. Proc. Natl. Acad. Sci. 108, 17604 (2011)

    ADS  Google Scholar 

  • H. Zhang, J.-L. Zhou, On the orbital evolution of a giant planet pair embedded in a gaseous disk. I. Jupiter-Saturn configuration. Astrophys. J. 714, 532–548 (2010)

    ADS  Google Scholar 

Download references

Acknowledgements

R. B. acknowledges financial assistance from the Japan Society for the Promotion of Science (JSPS) Shingakujutsu Kobo (JP19H05071). A.J. acknowledges funding from the European Research Foundation (ERC Consolidator Grant 724687-PLANETESYS), the Knut and Alice Wallenberg Foundation (Wallenberg Academy Fellow Grant 2017.0287) and the Swedish Research Council (Project Grant 2018-04867). H.L. and M.S. acknowledge the support of Europlanet 2020 RI. Europlanet 2020 RI has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 654208. We thank Nathan Kaib and Matt Clement for information regarding their ‘Early instability’ model. H. L. and M. S. acknowledge support from the FWF NFN subproject S11607-N16. M. L. acknowledge support of the Austrian FWF projects P27256-N27 and P30949-N36. The authors also thank the International Space Science Institute (ISSI) in Bern, Switzerland for the support. Finally, we thank the referee S. B. Jacobsen and an anonymous referee for their very helpful comments and suggestions that helped to improve this review article.

Author information

Authors and Affiliations

Authors

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reading Terrestrial Planet Evolution in Isotopes and Element Measurements

Edited by Helmut Lammer, Bernard Marty, Aubrey L. Zerkle, Michel Blanc, Hugh O’Neill and Thorsten Kleine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lammer, H., Brasser, R., Johansen, A. et al. Formation of Venus, Earth and Mars: Constrained by Isotopes. Space Sci Rev 217, 7 (2021). https://doi.org/10.1007/s11214-020-00778-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-020-00778-4

Keywords

Navigation