Skip to main content
Log in

Adaptive evolutionary Monte Carlo algorithm for optimization with applications to sensor placement problems

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we present an adaptive evolutionary Monte Carlo algorithm (AEMC), which combines a tree-based predictive model with an evolutionary Monte Carlo sampling procedure for the purpose of global optimization. Our development is motivated by sensor placement applications in engineering, which requires optimizing certain complicated “black-box” objective function. The proposed method is able to enhance the optimization efficiency and effectiveness as compared to a few alternative strategies. AEMC falls into the category of adaptive Markov chain Monte Carlo (MCMC) algorithms and is the first adaptive MCMC algorithm that simulates multiple Markov chains in parallel. A theorem about the ergodicity property of the AEMC algorithm is stated and proven. We demonstrate the advantages of the proposed method by applying it to a sensor placement problem in a manufacturing process, as well as to a standard Griewank test function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrieu, C., Robert, C.P.: Controlled MCMC for optimal sampling. MCMC Preprint Service. http://www.ceremade.dauphine.fr/~xian/control.ps.gz (2002)

  • Atchadé, Y.F., Rosenthal, J.S.: On adaptive Markov chain Monte Carlo algorithms. Bernoulli 11, 815–828 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Bertsimas, D., Tsitsiklis, J.: Simulated annealing. Stat. Sci. 8, 10–15 (1993)

    Article  Google Scholar 

  • Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Chapman & Hall, New York (1984)

    MATH  Google Scholar 

  • Brockwell, A.E., Kadane, J.B.: Identification of regeneration times in MCMC simulation, with application to adaptive schemes. J. Comput. Graph. Stat. 14, 436–458 (2005)

    Article  MathSciNet  Google Scholar 

  • Brooks, R.R., Ramanathan, P., Sayeed, A.M.: Distributed target classification and tracking in sensor networks. Proc. IEEE 91, 1163–1171 (2003)

    Article  Google Scholar 

  • Box, G.E.P., Wilson, K.B.: On the experimental attainment of optimum conditions. J. R. Stat. Soc. B Stat. Methodol. 13, 1–45 (1951)

    MathSciNet  Google Scholar 

  • Bukkapatnam, S.T.S., Nichols, J.M., Seaver, M., Trickey, S.T., Hunter, M.: A wavelet-based, distortion energy approach to structural health monitoring. Struct. Health Monitor. J. 4, 247–258 (2005)

    Article  Google Scholar 

  • Chen, V.C.P., Tsui, K., Barton, R.R., Meckesheimer, M.: A review on design, modeling and applications of computer experiments. IIE Trans. 38, 273–291 (2006)

    Article  Google Scholar 

  • Čivilis, A., Jensen, C.S., Pakalnis, S.: Techniques for efficient tracking of road-network-based moving objects. IEEE Trans. Knowl. Data Eng. 17, 698–712 (2005)

    Article  Google Scholar 

  • Fang, K., Li, R., Sudjianto, A.: Design and modeling for computer experiments. Chapman & Hall/CRC, Boca Raton (2006)

    MATH  Google Scholar 

  • Geman, S., Geman, D.: Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images. IEEE Trans. Pattern Anal. 6, 721–741 (1984)

    Article  MATH  Google Scholar 

  • Gilks, W.R., Richardson, S., Spiegelhalter, D.J.: Introducing Markov chain Monte Carlo. In: Markov Chain Monte Carlo in Practice, pp. 1–19. Chapman & Hall, London (1995)

    Google Scholar 

  • Gilks, W.R., Roberts, G.O., Sahu, S.K.: Adaptive Markov chain Monte Carlo through regeneration. J. Am. Stat. Assoc. 93, 1045–1054 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Griewank, A.O.: Generalized descent for global optimization. J. Optim. Theory Appl. 34, 11–39 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  • Guikema, S.D., Davidson, R.A., Çağnan, Z.: Efficient simulation-based discrete optimization. In: Ingalls, R.G., Rossetti, M.D., Smith, J.S., Peters, B.A. (eds.) Proceedings of the 2004 Winter Simulation Conference (2004)

  • Haario, H., Saksman, E., Tamminen, J.: An adaptive metropolis algorithm. Bernoulli 7, 223–242 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, New York (2001)

    MATH  Google Scholar 

  • Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT Press, Cambridge (1992)

    Google Scholar 

  • Huyet, A.L.: Optimization and analysis aid via data-mining for simulated production systems. Eur. J. Oper. Res. 173, 827–838 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Jin, J., Shi, J.: State space modeling of sheet metal assembly for dimensional control. J. Manuf. Sci. Eng. 121, 756–762 (1999)

    Article  Google Scholar 

  • Liang, F.: A generalized Wang-Landau algorithm for Monte Carlo computation. J. Am. Stat. Assoc. 100, 1311–1327 (2005)

    Article  MATH  Google Scholar 

  • Liang, F., Liu, C., Carroll, R.J.: Stochastic approximation in Monte Carlo Computation. J. Am. Stat. Assoc. 102, 305–320 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Liang, F., Wong, W.H.: Evolutionary Monte Carlo: applications to C p model sampling and change point problem. Stat. Sin. 10, 317–342 (2000)

    MATH  Google Scholar 

  • Liang, F., Wong, W.H.: Real-parameter evolutionary Monte Carlo with applications to Bayesian mixture models. J. Am. Stat. Assoc. 96, 653–666 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Liu, H., Igusa, T.: Feature-based classification for design optimization. Res. Eng. Des. 17, 189–206 (2007)

    Article  Google Scholar 

  • Kim, P., Ding, Y.: Optimal engineering system design guided by data-mining methods. Technometrics 47, 336–348 (2005)

    Article  MathSciNet  Google Scholar 

  • Liu, C., Ding, Y., Chen, Y.: Optimal coordinate sensor placements for estimating mean and variance components of variation sources. IIE Trans. 37, 877–889 (2005)

    Article  Google Scholar 

  • Mandroli, S.S., Shrivastava, A.K., Ding, Y.: A survey of inspection strategy and sensor distribution studies in discrete-part manufacturing processes. IIE Trans. 38, 309–328 (2006)

    Article  Google Scholar 

  • Mengersen, K.L., Tweedie, R.L.: Rates of convergence of the Hastings and Metropolis algorithms. Ann. Stat. 24, 101–121 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Michalski, R.S.: Learnable evolution model: evolutionary processes guided by machine learning. Mach. Learn. 38, 9–40 (2000)

    Article  MATH  Google Scholar 

  • Müller, P.: A generic approach to posterior integration and Gibbs sampling. Technical Report, Purdue University, West Lafayette, Indiana (1991)

  • Neal, R.M.: Bayesian learning for neural networks. Lecture Notes in Statistics, vol. 118. Springer, New York (1996)

    MATH  Google Scholar 

  • Roberts, G.O., Rosenthal, J.S.: General state-space Markov chains and MCMC algorithms. Probab. Surv. 1, 20–71 (2004)

    Article  MathSciNet  Google Scholar 

  • Roberts, G.O., Rosenthal, J.S.: Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms. J. Appl. Probab. 44, 458–475 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Roberts, G.O., Tweedie, R.L.: Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms. Biometrika 83, 95–110 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Rosenthal, J.S.: Minorization conditions and convergence rate for Markov chain Monte Carlo. J. Am. Stat. Assoc. 90, 558–566 (1995)

    Article  MATH  Google Scholar 

  • Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments. Stat. Sci. 4, 409–435 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  • Schwabacher, M., Ellman, T., Hirsh, H.: Learning to set up numerical optimizations of engineering designs. In: Braha, D. (ed.) Data Mining for Design and Manufacturing, pp. 87–125. Kluwer Academic, Dordrecht (2001)

    Google Scholar 

  • Simpson, T.W., Peplinski, J., Koch, P.N., Allen, J.K.: On the use of statistics in design and the implications for deterministic computer experiments. In: Design Theory and Methodology—DTM’97, Sacramento, CA, September 14–17, ASME, Paper No. DETC97/DTM-3881 (1997)

  • Wong, W.H., Liang, F.: Dynamic weighting in Monte Carlo and optimization. Proc. Natl. Acad. Sci. USA 94, 14220–14224 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faming Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, Y., Ding, Y. & Liang, F. Adaptive evolutionary Monte Carlo algorithm for optimization with applications to sensor placement problems. Stat Comput 18, 375–390 (2008). https://doi.org/10.1007/s11222-008-9079-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-008-9079-6

Keywords

Navigation