Skip to main content
Log in

Electronic, optical, and charge transfer properties of donor–bridge–acceptor hydrazone sensitizers

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The ground state geometries have been computed by using density functional theory (DFT) at B3LYP/6-31G*, B3LYP/6-31G**, and PCM-B3LYP/6-31G* level of theories. The highest occupied molecular orbitals (HOMOs) are delocalized on whole of the molecule and the lowest unoccupied molecular orbitals (LUMOs) are localized on the tricarbonitrile. The lowest HOMO and LUMO energies have been observed for Dye1 while highest for Dye4. The LUMO energies of Dye1–Dye4 are above the conduction band of TiO2 and HOMOs are below the redox couple. The absorption spectra have been computed in solvent (methanol) and without solvent by using time-dependant DFT at TD-B3LYP/6-31G*, TD-B3LYP/6-31G**, and PCM-TD-B3LYP/6-31G* level of theories. The calculated maximum absorption wavelengths of the spectra in methanol are in good agreement with experimental evidences. The maximum absorption wavelengths of new designed sensitizers are red shifted compared to parent molecule. The electronic coupling constant and electron injection have been computed by first principle investigations. The improved electronic coupling constant and electron injection revealed that new modeled systems would be efficient sensitizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1

Similar content being viewed by others

References

  1. O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  2. Gratzel M (2005) Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem 44:6841–6851

    Article  Google Scholar 

  3. Li S-L, Jiang K-J, Shao K-F, Yang L-M (2006) Novel organic dyes for efficient dye-sensitized solar cells. Chem Commun 2792–2794

  4. Wang SZ, Cui Y, Hara K, Dan-Oh Y, Kasada C, Shinpo A (2007) A high-light-harvesting-efficiency coumarin dye for stable dye-sensitized solar cells. Adv Mater 19:1138–1141

    Article  CAS  Google Scholar 

  5. Sayama K, Hara K, Mori N, Satsuki M, Suga S, Tsukagochi S, Abe Y, Sugihara H, Arakawa H (2000) Photosensitization of a porous TiO2 electrode with merocyanine dyes containing a carboxyl group and a long alkyl chain. Chem Commun 1173–1174

  6. Cui Y, Wu Y, Lu X, Zhang X, Zhou G, Miapeh FB, Zhu W, Wang Z-S (2011) Incorporating benzotriazole moiety to construct D-A-π-A organic sensitizers for solar cells: significant enhancement of open-circuit photovoltage with long alkyl group. Chem Mater 23:4394–4401

    Article  CAS  Google Scholar 

  7. Hara K, Horiguchi T, Kinoshita T, Sayama K, Sugihara H, Arakawa H (2000) Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells. Sol Energy Mater Sol Cells 64:115–134

    Article  CAS  Google Scholar 

  8. Stathatos E, Lianos P, Laschewsky A, Ouari O, Van Cleuvenbergen P (2001) Synthesis of a hemicyanine dye bearing two carboxylic groups and its use as a photosensitizer in dye-sensitized photoelectrochemical cells. Chem Mater 13:3888–3892

    Article  CAS  Google Scholar 

  9. Chen R, Yang X, Tian H, Wang X, Hagfeldt A, Sun L (2007) Effect of tetrahydroquinoline dyes structure on the performance of organic dye-sensitized solar cells. Chem Mater 19:4007–4015

    Article  CAS  Google Scholar 

  10. Baik C, Kim D, Kang MS, Song K, Sang OK, Ko J (2009) Synthesis and photovoltaic properties of novel organic sensitizers containing indolo[1,2-f]phenanthridine for solar cell. Tetrahedron 65:5302–5307

    Article  CAS  Google Scholar 

  11. Ferrere S, Zaban A, Gregg B (1997) Dye sensitization of nanocrystalline tin oxide by perylene derivatives. J Phys Chem B 101:4490–4493

    Article  CAS  Google Scholar 

  12. Ferrere S, Gregg B (1997) New perylenes for dye sensitization of TiO2. New J Chem 26:1155–1160

    Article  Google Scholar 

  13. Horiuchi T, Miura H, Sumioka K, Uchida S (2004) High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. J Am Chem Soc 126:12218–12219

    Article  CAS  Google Scholar 

  14. Srinivas K, Yesudas K, Bhanuprakash K, Rao VJ, Giribabu L (2009) A combined experimental and computational investigation of anthracene based sensitizers for DSSC: comparison of cyanoacrylic and malonic acid electron withdrawing groups binding onto the TiO2 anatase (101) surface. J Phys Chem C 113:20117–20126

    Article  CAS  Google Scholar 

  15. Hara K, Sato T, Katoh R, Furube A, Ohga Y, Shinpo A, Suga S, Sayama K, Sugihara H, Arakawa H (2003) Molecular design of coumarin dyes for efficient dye-sensitized solar cells. J Phys Chem B 107:597–606

    Article  CAS  Google Scholar 

  16. Hwang S, Lee JH, Park C, Lee H, Kim C, Park C, Lee M–H, Lee W, Park J, Kim K, Park N-G, Kim C (2007) A highly efficient organic sensitizer for dye-sensitized solar cells. Chem Commun 4887–4889

  17. Park SS, Won YS, Choi YC, Kim JH (2009) Molecular design of organic dyes with double electron acceptor for dye-sensitized solar cell. Energy Fuels 23:3732–3736

    Article  CAS  Google Scholar 

  18. Tian H, Yang X, Cong J, Chen R, Liu J, Hao Y, Hagfeldt A, Sun L (2009) Tuning of phenoxazine chromophores for efficient organic dye-sensitized solar cells. Chem Commun 6288–6290

  19. Duncan WR, Prezhdo OV (2007) Theoretical studies of photoinduced electron transfer in dye-sensitized TiO2. Annu Rev Phys Chem 58:143–184

    Article  CAS  Google Scholar 

  20. Duncan WR, Prezhdo OV (2008) Temperature independence of the photoinduced electron injection in dye-sensitized TiO2 rationalized by Ab Initio time-domain density functional theory. J Am Chem Soc 130:9756–9762

    Article  CAS  Google Scholar 

  21. Rego LGC, Batista VS (2003) Quantum dynamics simulations of interfacial electron transfer in sensitized TiO2 semiconductors. J Am Chem Soc 125:7989–7997

    Article  CAS  Google Scholar 

  22. Guo ZY, Zhao Y, Liang WZ, Chen GH (2008) Real-Time propagation of the reduced one-electron density matrix in atom-centered orbitals: application to electron injection dynamics in dye-sensitized TiO2 clusters. J Phys Chem C 112:16655–16662

    Article  CAS  Google Scholar 

  23. Kondov I, Clzek M, Benesch C, Wang HB, Thoss M (2007) Quantum dynamics of photoinduced electron-transfer reactions in dye-semiconductor systems: first-principles description and application to coumarin 343-TiO2. J Phys Chem C 111:11970–11981

    Article  CAS  Google Scholar 

  24. Nilsing M, Persson P, Lunell S, Ojamäe L (2007) Dye-sensitization of the TiO2 rutile (110) surface by perylene dyes: quantum-chemical periodic B3LYP computations. J Phys Chem C 111:12116–12123

    Article  CAS  Google Scholar 

  25. De Angelis F, Fantacci S, Selloni A (2004) Time-dependent density functional theory study of the absorption spectrum of [Ru(4,4′-COOH-2,2′-bpy)2(NCS)2] in water solution: influence of the pH. Chem Phys Lett 389:204–208

    Article  Google Scholar 

  26. De Angelis F, Fantacci S, Selloni A, Nazeeruddin MK (2005) Time dependent density functional theory study of the absorption spectrum of the [Ru(4,4′-COO-2,2′-bpy)2(X)2]4–(X = NCS, Cl) dyes in water solution. Chem Phys Lett 415:115–120

    Article  Google Scholar 

  27. Xu Y, Chen WK, Cao MJ, Liu SH, Li JQ, Philippopoulos AI, Falaras P (2006) A TD-DFT study on the electronic spectrum of Ru(II)L2 [L = bis(5′-methyl-2,2′-bipyridine-6-carboxylato)] in the gas phase and DMF solution. Chem Phys 330:204–211

    Article  CAS  Google Scholar 

  28. Ito S, Zakeeruddin SM, Humphry-Baker R, Liska P, Charvet R, Comte P, Nazeeruddin MK, Péchy P, Takata M, Miura H, Uchida S, Grätzel M (2006) High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness. Adv Mater 18:1202–1205

    Article  CAS  Google Scholar 

  29. De Angelis F, Fantacci S, Selloni A, Grätzel M, Nazeeruddin MK (2007) Influence of the sensitizer adsorption mode on the open-circuit potential of dye-sensitized solar cells. Nano Lett 7:3189–3195

    Article  Google Scholar 

  30. De Angelis F, Fantacci S, Selloni A, Nazeeruddin MK, Grätzel M (2007) Time-dependent density functional theory investigations on the excited states of Ru(II)-dye-sensitized TiO2 nanoparticles: the role of sensitizer protonation. J Am Chem Soc 129:14156–14157

    Article  Google Scholar 

  31. De Angelis F, Fntacci S, Selloni A (2008) Alignment of the dye’s molecular levels with the TiO2 band edges in dye-sensitized solar cells: a DFT-TDDFT study. Nanotechnology 19:424002–424009

    Article  Google Scholar 

  32. Di Censo D, Fantacci S, De Angelis F, Klein C, Evans N, Kalyanasundaram K, Bolink HJ, Grätzel M, Nazeeruddin MK (2008) Synthesis, characterization, and DFT/TD-DFT calculations of highly phosphorescent blue light-emitting anionic iridium complexes. Inorg Chem 47:980–989

    Article  Google Scholar 

  33. Al-Sehemi AG, Irfan A, Asiri AM, Ammar YA (2012) Synthesis, characterization and DFT study of methoxybenzylidene containing chromophores for DSSC materials. Spectrochim Acta Part A: Molec Biomolec Spect 91:239–243.

    Google Scholar 

  34. Balanay MP, Kim DH (2008) DFT/TD-DFT molecular design of porphyrin analogues for use in dye-sensitized solar cells. Phys Chem Chem Phys 10:5121–5127

    Article  CAS  Google Scholar 

  35. Satoh N, Cho JS, Higuchi M, Yamamoto K (2003) Novel triarylamine dendrimers as a hole-transport material with a controlled metal-assembling function. J Am Chem Soc 125:8104–8105

    Article  CAS  Google Scholar 

  36. Satoh N, Nakashima T, Yamamoto K (2005) Metal-assembling dendrimers with a triarylamine core and their application to a dye-sensitized solar cell. J Am Chem Soc 127:13030–13038

    Article  CAS  Google Scholar 

  37. Al-Sehemi AG, Irfan A, Asiri AM, Ammar YA (2012) Molecular design of new hydrazone dyes for dye-sensitized solar cells: Synthesis, characterization and DFT study. J Molec Struct 1019:130–134.

    Google Scholar 

  38. Stein T, Kronik L, Baer R (2009) Prediction of charge-transfer excitations in coumarin-based dyes using a range-separated functional tuned from first principles. J Chem Phys 131:244119–244123

    Article  Google Scholar 

  39. Wong BM, Piacenza M, Sala FD (2009) Absorption and fluorescence properties of oligothiophene biomarkers from long-range-corrected time-dependent density functional theory. Phys Chem Chem Phys 11:4498–4508

    Article  CAS  Google Scholar 

  40. Wong BM, Cordaro JG (2008) Coumarin dyes for dye-sensitized solar cells: a long-range-corrected density functional study. J Chem Phys 129:214703–214710

    Article  Google Scholar 

  41. Lange AW, Rohrdanz MA, Herbert JM (2008) Charge-transfer excited states in a π-stacked adenine dimer, as predicted using long-range-corrected time-dependent density functional theory. J Phys Chem B 112:6304–6308

    Article  CAS  Google Scholar 

  42. Rohrdanz MA, Herbert JM (2008) Simultaneous benchmarking of ground- and excited-state properties with long-range-corrected density functional theory. J Chem Phys 129:034107–034115

    Article  Google Scholar 

  43. Toulouse J, Colonna F, Savin A (2005) Short-range exchange and correlation energy density functionals: beyond the local-density approximation. J Chem Phys 122:014110–014119

    Article  Google Scholar 

  44. Livshits E, Baer R (2007) A well-tempered density functional theory of electrons in molecules. Phys Chem Chem Phys 9:2932–2941

    Article  CAS  Google Scholar 

  45. Preat J (2010) Photoinduced energy-transfer and electron-transfer processes in dye-sensitized solar cells: tDDFT insights for triphenylamine dyes. J Phys Chem C 114:16716–16725

    Article  CAS  Google Scholar 

  46. Preat J, Michaux C, Jacquemin D, Perpète EA (2010) Enhanced efficiency of organic dye-sensitized solar cells: triphenylamine derivatives. J Phys Chem C 113:16821–16833

    Article  Google Scholar 

  47. Magyar RJ, Tretiak S (2007) Dependence of spurious charge-transfer excited states on orbital exchange in TDDFT: large molecules and clusters. J Chem Theory Comput 3:976–987

    Article  CAS  Google Scholar 

  48. Irfan A, Al-Sehemi AG (2012) Donor-bridge-acceptor effect on the electron injection in triphenylamine based sensitizers: density functional theory investigations

  49. Irfan A, Al-Sehemi AG (2012) Quantum chemical investigations of the electron injection in triphenylamine based sensitizers

  50. Peach MJG, Benfield P, Helgaker T, Tozer DJ (2008) Excitation energies in density functional theory: an evaluation and a diagnostic test. J Chem Phys 128:044118

    Article  Google Scholar 

  51. Bertolino CA, Ferrari AM, Barolo C, Viscardi G, Caputo S, Coluccia G (2006) Solvent effect on indocyanine dyes: a computational approach. Chem Phys 330:52–59

    Article  CAS  Google Scholar 

  52. Jacquemin D, Perpète EA, Scalmani G, Frisch MJ, Kobayashi R, Adamo C (2007) Assessment of the efficiency of long-range corrected functionals for some properties of large compounds. J Chem Phys 126:144105

    Article  Google Scholar 

  53. Guillaumont D, Nakamura S (2000) Calculation of the absorption wavelength of dyes using time-dependent density-functional theory (TD-DFT). Dyes Pigment 46:85–92

    Article  CAS  Google Scholar 

  54. Al-Sehemi AG, Irfan A, Asiri AM (2012) The DFT investigations of the electron injection in hydrazone-based sensitizers. Theor Chem Acc 131:1199–1208

    Article  Google Scholar 

  55. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  56. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  57. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  58. Lynch BJ, Fast PL, Harris M, Truhlar DG (2000) Adiabatic connection for kinetics. J Phys Chem A 104:4811–4815

    Article  CAS  Google Scholar 

  59. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  60. Walsh PJ, Gordon KC, Officer DL, Campbell WM (2006) A DFT study of the optical properties of substituted Zn(II)TPP complexes. J Mol Struc 759:17–24

    Article  CAS  Google Scholar 

  61. Cleland DM, Gordon KC, Officer DL, Wagner P, Walsh PJ (2009) Tuning the optical properties of ZnTPP using carbonyl ring fusion. Spectrochim Acta A 74:931–935

    Article  Google Scholar 

  62. Zhang CR, Liang WZ, Chen HS, Chen YH, Wei ZQ, Wu YZ (2008) Theoretical studies on the geometrical and electronic structures of N-methyle-3,4-fulleropyrrolidine. J Mol Struc 862:98–104

    Article  CAS  Google Scholar 

  63. Sun J, Song J, Zhao Y, Liang WZ (2007) Real-time propagation of the reduced one-electron density matrix in atom-centered Gaussian orbitals: application to absorption spectra of silicon clusters. J Chem Phys 127:234107–234113

    Article  Google Scholar 

  64. Matthews D, Infelta P, Grätzel M (1996) Calculation of the photocurrent-potential characteristic for regenerative, sensitized semiconductor electrodes. Sol Energy Mater Sol Cells 44:119–155

    Article  CAS  Google Scholar 

  65. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.1. Gaussian, Inc., Wallingford

    Google Scholar 

  66. Cossi M, Barone V (2001) Time-dependent density functional theory for molecules in liquid solutions. J Chem Phys 115:4708–4717

    Article  CAS  Google Scholar 

  67. Amovilli C, Barone V, Cammi R, Cancès E, Cossi M, Mennucci B, Pomelli CS, Tomasi J (1998) Recent advances in the description of solvent effects with the polarizable continuum model. Adv Quant Chem 32:227–261

    Article  Google Scholar 

  68. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3094

    Article  CAS  Google Scholar 

  69. Preat J, Jacquemin D, Perpete E (2010) Design of new triphenylamine-sensitized solar cells: a theoretical approach. Environ Sci Technol 44:5666–5671

    Article  CAS  Google Scholar 

  70. Preat J (2010) Photoinduced energy-transfer and electron-transfer processes in dye-sensitized solar cells: TDDFT insights for triphenylamine dyes. Sol Energy Mater Sol Cells 114:16716–16725

    CAS  Google Scholar 

  71. Pourtois G, Beljonne J, Ratner MA, Bredas JL (2002) Photoinduced electron-transfer processes along molecular wires based on phenylenevinylene oligomers: a quantum-chemical insight. J Am Chem Soc 124:4436–4447

    Article  CAS  Google Scholar 

  72. Hsu C (2009) The electronic couplings in electron transfer and excitation energy transfer. Acc Chem Res 42:509–518

    Article  CAS  Google Scholar 

  73. Marcus RA (1993) Electron transfer reactions in chemistry. Theory and experiment. Rev Mod Phys 65:599–610

    Article  CAS  Google Scholar 

  74. Asbury JB, Wang YQ, Hao E, Ghosh H, Lian T (2001) Evidences of hot excited state electron injection from sensitizer molecules to TiO2 nanocrystalline thin films. Res Chem Intermed 27:393–406

    Article  CAS  Google Scholar 

  75. Katoh R, Furube A, Yoshihara T, Hara K, Fujihashi G, Takano S, Murata S, Arakawa H, Tachiya M (2004) Efficiencies of electron injection from excited N3 dye into nanocrystalline semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) films. J Phys Chem B 108:4818–4822

    Article  CAS  Google Scholar 

  76. Hagfeldt A, Grätzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95:49–68

    Article  CAS  Google Scholar 

  77. Barbara PF, Meyer TJ, Ratner MA (1996) Contemporary issues in electron transfer research. J Phys Chem 100:13148–13168

    Article  CAS  Google Scholar 

  78. Nalwa HS (2001) Handbook of advanced electronic and photonic materials and devices. Academic Press, San Diego, CA

    Google Scholar 

  79. Cassida M (1995) Recent advances in density functional methods: time dependent density functional response theory for molecules. DP Chong, Singapore

    Google Scholar 

  80. Harris DC, Bertolucci MD (1998) Symmetry and spectroscopy. Dover, New York

    Google Scholar 

Download references

Acknowledgments

The support and facilities to carry out the research provided by King Khalid University is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdullah G. Al-Sehemi or Ahmad Irfan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 54 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Sehemi, A.G., Al-Melfi, M.A.M. & Irfan, A. Electronic, optical, and charge transfer properties of donor–bridge–acceptor hydrazone sensitizers. Struct Chem 24, 499–506 (2013). https://doi.org/10.1007/s11224-012-0103-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-0103-2

Keywords

Navigation