Skip to main content
Log in

Theoretical studies of perimidine and its derivatives: structures, energies, and spectra

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Theoretical calculations at the B3LYP/6-311++G(d,p) level plus GIAO calculations for NMR absolute shieldings have been carried out for the parent perimidine and several of its derivatives. These include its anion and cation and the acid-base equilibria and other examples of annular tautomerism, such as the 2-hydroxy (and their radical cations), 2-thiol, 2-amino, and 2-alkyl perimidines, and the functional tautomers, such as the benzologues of perimidone. The protonation of 2-aminoperimidines (cyclic guanidines) and the properties of perimidine carbene (dimerization and addition to carbon dioxide), biperimidine, dihydroperimidine, and spiro bidihydroperimidine were also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Pozharskii AF, Dal’nikovskaya VV (1981). Russ Chem Rev 50:816–835

    Google Scholar 

  2. Claramunt RM, Dotor J, Elguero J (1995). An Quim 91:151–183

    CAS  Google Scholar 

  3. Elguero J, Llouquet G, Marzin C (1975). Tetrahedron Lett 4085–4086

  4. Yavari I, Adib M, Jahani-Moghaddam F, Bijanzadeh HR (2002). Tetrahedron 58:6901–6906

    CAS  Google Scholar 

  5. Akita M, Seto H, Aoyama R, Kimura J, Kobayashi K (2012). Molecules 17:13879–13890

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Elguero J, Marzin C, Katritzky AR, Linda P (1976) The tautomerism of heterocycles. Academic Press, New York

    Google Scholar 

  7. Minkin VI, Garnovski AD, Elguero J, Katritzky AR, Denisko O (2000). Adv Heterocycl Chem 76:157–323

    CAS  Google Scholar 

  8. Cado F, Di Martino JL, Jacqualt P, Bazureau JP, Hamelin J (1996). 6:587–595

  9. Claramunt RM, Dotor J, Sanz D, Foces-Foces C, Llamas-Saiz AL, Elguero J, Flammang R, Morizur JP, Chapon E, Tortajada J (1994). Helv Chim Acta 77:121–139

    CAS  Google Scholar 

  10. Morais VMF, Miranda MS, Matos MAR, Liebman JF (2006). Mol Phys 104:325–334

    CAS  Google Scholar 

  11. Abdeldjebar H, Belmiloud Y, Djitti W, Achour S, Brahimi M, Tangour B (2019). Prog React Kinet Mech 44:143–156

    CAS  Google Scholar 

  12. Becke AD (1988). Phys Rev A 38:3098–3100

    CAS  Google Scholar 

  13. Becke AD (1993). J Chem Phys 98:5648–5652

    CAS  Google Scholar 

  14. Ditchfield R, Hehre WJ, Pople JA (1971). J Chem Phys 54:724–728

    CAS  Google Scholar 

  15. Frisch MJ, Pople JA, Binkley JS (1984). J Chem Phys 80:3265–3269

    CAS  Google Scholar 

  16. London F (1937). J Phys Radium 8:397–409

    CAS  Google Scholar 

  17. Ditchfield R (1974). Mol Phys 27:789–807

    CAS  Google Scholar 

  18. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralt, JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell A P, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT

  19. Silva AMS, Jimeno ML, Blanco F, Alkorta I, Elguero J (2008). Magn Reson Chem 46:859–864

    CAS  PubMed  Google Scholar 

  20. Blanco F, Alkorta I, Elguero J (2007). Magn Reson Chem 45:797–800

    CAS  PubMed  Google Scholar 

  21. Groom CR, Bruno IJ, Lighfoot MP, Ward SC (2016) The Cambridge Structural Database, CSD Version 5.40, Feb. 2019 update. Acta Crystallogr Sect B 72:171–179

    CAS  Google Scholar 

  22. Ng SW, Drew MGB, Mostafa G, Patra GK, Datta D (2002). Indian J Chem 41B:211–214

    CAS  Google Scholar 

  23. Minkin VI, Zhdanov YA, Sadekov ID, Raevskii OA, Garnovskii AD (1967). Chem Heterocycl Compd 3:855–860

    Google Scholar 

  24. Morgan KJ (1961). J Chem Soc 2343–2347

  25. Andersson MP, Uvdal P (2005). J Phys Chem A 109:2937–2941

    CAS  PubMed  Google Scholar 

  26. Pozharskii AF, Kashparov IS, Holls PJ, Zaletov VG (1971). Chem Heterocycl Compd 7:507–515

    Google Scholar 

  27. Pozharskii AF, Kashparov IS (1970). Chem Heterocycl Compd 6:106–110

    Google Scholar 

  28. Catalán J, Abboud JLM, Elguero J (1987) Adv. Heterocycl Chem 41:187–274

    Google Scholar 

  29. Llamas-Saiz AL, Foces-Foces C, Sanz D, Claramunt RM, Dotor J, Elguero J, Catalán J, del Valle JC (1995). J Chem Soc Perkin Trans 2:1389–1398

    Google Scholar 

  30. Foces-Foces C, Llamas-Saiz AL, Claramunt RM, Sanz D, Dotor J, Elguero J (1993). J Crystallogr Spectrosc Res 23:305–312

    CAS  Google Scholar 

  31. Sánchez-Quesada J, Seel C, Prados P, Mendoza JD (1996). J Am Chem Soc 118:277–278

    Google Scholar 

  32. Raczynsja ED, Cyranski MK, Gutowski M, Rak J, Gal JF, Maria PC, Darowska M, Duczmal K (2003). J Phys Org Chem 16:91–106

    Google Scholar 

  33. Coles MP (2009). Chem Commun 3659–3676

  34. Kooijman H, Spek AL, Timmerman P, Reinhoudt DN (2007). Private communication

  35. Baker SM, Baughman RG, Meloan CE, Mumba P (1996). Acta Crystallogr Sect C 52:998–1000

    Google Scholar 

  36. Tokoyama T, Masuo T, Akashi H, Zenki M (1995). Bull Chem Soc Jpn 68:1331–1336

    Google Scholar 

  37. Pozharskii AF, Starshikov NM, Pozharskii FT, Mandrykin YI (1977). Chem Heterocycl Compd 13:794–799

    Google Scholar 

  38. Gompper R, Kutter E, Schmidt RR (1965). Chem Ber 98:1374–1384

    CAS  Google Scholar 

  39. Bazinet P, Ong TG, O'Brien JS, Lavoie N, Bell E, Yap GPA, Korobkov I, Richeson DS (2007). Organometallics 26:2885–2895

    CAS  Google Scholar 

  40. Bazinet P, Yap GPA, Richeson DS (2003). J Am Chem Soc 125:13314–13315

    CAS  PubMed  Google Scholar 

  41. Pozharskii AF, Starshikov NM (1978). Chem Heterocycl Compd 14:1156–1159

    Google Scholar 

  42. Pozharskii AF, Starshikov NM (1980). Chem Heterocycl Compd 16:81–85

    Google Scholar 

  43. Bayir ZA, Bekaroglu O (1997). Synth React Inorg Metal-Org Chem 27:1483–1490

    CAS  Google Scholar 

  44. Aksenov AV, Magamadova MK, Lobach DA (2012). Chem Heterocycl Compd 48:1267–1268

    CAS  Google Scholar 

  45. Aksenov AV, Magamadova MH, Lobach DA, Aksenova IV, Malikova IV, Rubin M (2014). Chem Heterocycl Compd 50:1298–1304

    CAS  Google Scholar 

  46. Alkorta I, Elguero J, Roussel C, Vanthuyne N, Piras P (2012). Adv Heterocycl Chem 105:1–188

    CAS  Google Scholar 

  47. Maloney S, Slawin AMZ, Woolins JD (2013). Acta Crystallogr Sect E 69:o246

    CAS  Google Scholar 

  48. Krieck S, Schulze D, Gorls H (2014) Westerhausen. Z Naturforsch B 69:1299–1305

    CAS  Google Scholar 

  49. Pozharskii AF, Suslov AN, Starshikov NM, Popova AN, Klyuev NA, Adanin VA (1980). J Org Chem USSR 16:1890–1902

    Google Scholar 

  50. Gleiter R, Uschmann J (1986). J Organomet Chem 51:370–380

    CAS  Google Scholar 

Download references

Acknowledgments

Thanks are given to the CTI (CSIC) for their continued computational support.

Funding

This work was carried out with financial support from the Spanish Ministerio de Ciencia, Innovación y Universidades (Projects PGC2018-094644-B-C2), and Dirección General de Investigación e Innovación de la Comunidad de Madrid (PS2018/EMT-4329 AIRTEC-CM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibon Alkorta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This research is dedicated to Professor Alexander F. Pozharskii of the Department of Organic Chemistry of the Southern Federal University (Rostov-on-Don), our friend and the main contributor of perimidine chemistry on the occasion of his 81th anniversary.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 92 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkorta, I., Elguero, J. Theoretical studies of perimidine and its derivatives: structures, energies, and spectra. Struct Chem 31, 25–35 (2020). https://doi.org/10.1007/s11224-019-01451-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01451-5

Keywords

Navigation