Skip to main content
Log in

Explosive vapor detection using novel graphdiyne nanoribbons—a first-principles investigation

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

We investigated the capability of graphdiyne nanoribbon (GdNR) to detect the existence of explosive vapors like hexogen or cyclonite, hexamethylene triperoxide diamine (HMTD), and 2,4,6-trinitrotoluene (TNT) using ATK-VNL package. In order to determine the sensing response of GdNR towards these explosive vapors, the geometric firmness of the material is first verified with the assistance of cohesive energy. Then, electronic characteristics like the projected density of states (PDOS) spectrum, band structure, and electron density are examined for both isolated and explosive vapor adsorbed GdNR. Further, adsorption attributes like average energy gap variation, enthalpy adsorption, adsorption energy, and Bader charge transfer are explored for explosive vapor adsorbed GdNR. Moreover, there is a need for rapid detection of explosive vapors using solid-state chemical sensors. The scrutinization of these attributes affirms the employment of GdNR as a chief material in a chemical nanosensor to perceive the availability of the mentioned explosive vapors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–670

    CAS  Google Scholar 

  2. Ivanovskii AL (2013) Graphynes and graphdyines. Prog Solid State Chem 41:1–19

    CAS  Google Scholar 

  3. Long M, Tang L, Wang D, Li Y, Shuai Z (2011) Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons : Theoretical Predictions. ACS Nano 5:2593–2600

    PubMed  CAS  Google Scholar 

  4. Li G, Li Y, Liu H, Li G, Li Y, Liu H, Guo Y, Zhu D (2010) Architecture of graphdiyne nanoscale films. Chem Commun 46:3256–3259

    CAS  Google Scholar 

  5. Pei Y (2012) Mechanical properties of graphdiyne sheet. Phys B Phys Condens Matter 407:4436–4439

    CAS  Google Scholar 

  6. Srinivasu K, Ghosh SK (2012) Graphyne and graphdiyne: promising materials for nanoelectronics and energy storage applications. J Phys Chem C 116:5951–5956

    CAS  Google Scholar 

  7. Yang N (2013) Photocatalytic properties of graphdiyne and graphene modified TiO2: From Theory to Experiment. ACS Nano 7:1504–1512

    PubMed  CAS  Google Scholar 

  8. Pan Y, Wang Y, Wang L, Zhong H, Quhe R, Ni Z, Ye M, Mei W, Shi J, Guo W, Yang J, Lu J (2015) Graphdiyne–metal contacts and graphdiyne transistors. Nanoscale 7:2116–2127

    PubMed  CAS  Google Scholar 

  9. He J, Zhou P, Zhang CX, He C, Sun LZ (2012) Magnetic properties of single transition-metal atom absorbed graphdiyne and graphyne sheet from DFT + U calculations. J Phys Chem C 116:26313–26321

    CAS  Google Scholar 

  10. Zhang S, Liu H, Huang C, Cui G, Li Y (2015) Bulk graphdiyne powder applied for highly efficient lithium storage. Chem Commun 51:1834–1837

    CAS  Google Scholar 

  11. Parvin N, Jin Q, Wei Y, Yu R, Zheng B, Huang L, Zhang Y, Wang L, Zhang H, Gao M, Zhao H, Hu W, Li Y, Wang D (2017) Few-layer graphdiyne nanosheets applied for multiplexed real-time DNA detection. Adv Mater 29:1606755

    Google Scholar 

  12. Haley MM, Brand SC, Pak JJ (1997) Carbon networks based on dehydrobenzoannulenes: synthesis of graphdiyne substructures. Angew Chem Int Ed Eng 36:835–838

    Google Scholar 

  13. Haley MM (2008) Synthesis and properties of annulenic subunits of graphyne and graphdiyne nanoarchitecture. Pure Appl Chem 80:519–532

    CAS  Google Scholar 

  14. Pari S, Cue A, Wong BM (2016) Structural and electronic properties of graphdiyne carbon nanotubes from large-scale DFT calculations. J Phys Chem C 120:18871–18877

    CAS  Google Scholar 

  15. Jiao Y, Du A, Hankel M, Zhu Z, Rudolph V, Smith SC (2011) Graphdiyne: a versatile nanomaterial for electronics and hydrogen purification. Chem Commun 47:11843–11845

    CAS  Google Scholar 

  16. Chen X, Gao P, Guo L, Zhang S (2015) Graphdiyne as a promising material for detecting amino acids. Sci Rep 5:16720

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Nagarajan V, Chandiramouli R (2018) Investigation of NH3 adsorption behavior on graphdiyne nanosheet and nanotubes: a first-principles study. J Mol Liq 249:24–32

    CAS  Google Scholar 

  18. Nagarajan V, Srimathi U, Chandiramouli R (2018) First-principles insights on detection of dimethyl amine and trimethyl amine vapors using graphdiyne nanosheets. Comput Theor Chem 1123:119–127

    CAS  Google Scholar 

  19. Srimathia U, Nagarajan V, Chandiramouli R (2018) Interaction of imuran, pentasa and hyoscyamine drugs and solvent effects on graphdiyne nanotube as a drug delivery system - a DFT study. J Mol Liq 265:199–207

    Google Scholar 

  20. Srimathia U, Nagarajan V, Chandiramouli R (2019) Investigation on graphdiyne nanosheet in adsorption of sorafenib and regorafenib drugs : a DFT approach. J Mol Liq 277:776–785

    Google Scholar 

  21. Topuz S, Alpertunga B (2003) Determination of cyclonite ( RDX ) in human plasma by high-performance liquid chromatography. Il Farmaco 58:445–448

    PubMed  Google Scholar 

  22. Vodochodský O, Jalový Z, Matyáš R, Novotná M (2019) Determination of triacetone triperoxide and hexamethylene triperoxide diamine in various matrices using infrared spectroscopy. Appl Spectrosc 73:195–202

    PubMed  Google Scholar 

  23. Legler L (1885) Ueber producte der langsamen verbrennung des aethyläthers. 18:3343–3351

    Google Scholar 

  24. Senesac L, Thundat TG (2008) Nanosensors for trace explosive detection. Mater Today 11:28–36

    CAS  Google Scholar 

  25. Van Setten MJ, Giantomassi M, Bousquet E, Verstraete MJ, Hamann DR (2018) The PseudoDojo : training and grading a 85 element optimized norm-conserving pseudopotential table. Comput Phys Commun 226:39–54

    Google Scholar 

  26. Perdew JP, Burke K, Wang Y (1996) Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B 54:533–539

    Google Scholar 

  27. Perdew JP, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687

    CAS  Google Scholar 

  28. Monkhorst HJ, Pack JD (1976) Special points for. Brillonin-Zone Integrations 13(1976):5188–5192

    Google Scholar 

  29. Nagarajan V, Chandiramouli R (2019) Investigation on probing explosive nitroaromatic compound vapors using graphyne nanosheet : a first-principle study. Struct Chem 30:657

    CAS  Google Scholar 

  30. Bhuvaneswari R, Nagarajan V, Chandiramouli R (2019) Investigation on bare and hydrogenated Sb-nanosheets as an electrode material for Na-ion battery - a DFT study. Phys B Phys Condens Matter 562:75–81

    CAS  Google Scholar 

  31. Narita N (1998) Optimized geometries and electronic structures of graphyne and its family. Phys Rev B 58:9–14

    Google Scholar 

  32. Amin B, Kaloni TP, Schwingenschlogl U (2014) Strain engineering of WS2, WSe2, and WTe2. RSC Adv 4:34561–34565

    CAS  Google Scholar 

  33. Barraza-lopez S, Kaloni TP (2018) Water splits to degrade two-dimensional group-IV monochalcogenides in nanoseconds. ACS Cent Sci 4:1436–1446

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Mukherjee S, Kaloni TP (2012) Electronic properties of boron- and nitrogen-doped graphene : a first principles study. J Nanopart Res 14:1059

    Google Scholar 

  35. Maria JP, Bhuvaneswari R, Nagarajan V, Chandiramouli R (2019) Diethanolamine and quaternium-15 interaction studies on antimonene nanosheet based on first-principles studies. Comput Theor Chem 1157:19–27

    Google Scholar 

  36. Mukhopadhyay S, Scheicher RH, Pandey R, Karna SP (2011) Sensitivity of boron nitride nanotubes toward biomolecules of different polarities. J Phys Chem Lett 2:2442–2447

    CAS  Google Scholar 

  37. Soltani A, Baei MT, Lemeski ET, Shahini M (2014) Sensitivity of BN nano-cages to caffeine and nicotine molecules. Superlattice Microst 76:315–325

    CAS  Google Scholar 

  38. Srimathia U, Nagarajan V, Chandiramouli R (2019) Germanane nanosheet as a novel biosensor for liver cirrhosis based on adsorption of biomarker volatiles – a DFT study. Appl Surf Sci 475:990–998

    Google Scholar 

  39. Bhuvaneswari R, Nagarajan V, Chandiramouli R (2019) Arsenene nanoribbons for sensing NH3 and PH3 gas molecules – a first-principles perspective. Appl Surf Sci 469:173–180

    CAS  Google Scholar 

  40. Yoosefian M, Pakpour A, Etminan N (2018) Nanofilter platform based on functionalized carbon nanotubes for adsorption and elimination of Acrolein, a toxicant in cigarette smoke. Appl Surf Sci 444:598–603

    CAS  Google Scholar 

  41. Snehha P, Nagarajan V, Chandiramouli R (2019) Germanene nanotube electroresistive molecular device for detection of NO2 and SO2 gas molecules: a first-principles investigation. J Comput Electron 18:308–318

    CAS  Google Scholar 

  42. Bhuvaneswari R, Nagarajan V, Chandiramouli R (2019) Germanene nanosheets as a novel anode material for sodium-ion batteries — a first-principles investigation Germanene nanosheets as a novel anode material for sodium-ion batteries — a first-principles investigation. Mater Res Express 6:035504

    Google Scholar 

  43. Rad AS, Abedini E (2016) Chemisorption of NO on Pt-decorated graphene as modified nanostructure media : a first principles study. Appl Surf Sci 360:1041–1046

    CAS  Google Scholar 

  44. Shokuhi A, Mehdi S, Aali E, Peyravi M (2017) Study on the electronic structure of Cr- and Ni-doped fullerenes upon adsorption of adenine : a comprehensive DFT calculation. Diam Relat Mater 77:116–121

    Google Scholar 

  45. Karlicky F, Otyepkova E, Lo R, Pitonak M, Jurecka P, Pykal M, Hobza P, Otyepka M (2017) Adsorption of organic molecules to van der Waals materials: comparison of fluorographene and fluorographite with graphene and graphite. J Chem Theory Comput 13:1328–1340

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Osouleddini N, Rastegar SF (2019) DFT study of the CO2 and CH4 assisted adsorption on the surface of graphene. J Electron Spectros Relat Phenomena 232:105–110

    CAS  Google Scholar 

  47. Bhuvaneswari R, Nagarajan V, Chandiramouli R (2019) First-principles analysis of the detection of amine vapors using an antimonene electroresistive molecular device. J Comput Electron. https://doi.org/10.1007/s10825-019-01346-y

    CAS  Google Scholar 

  48. Ahmadi A, Noei M (2014) The alkali and alkaline earth metal doped ZnO nanotubes : DFT studies. Phys B Phys Condens Matter 432:105–110

    Google Scholar 

  49. Beheshtian J, Ahmadi A, Noei M (2013) Sensing behavior of Al and Si doped BC3 graphenes to formaldehyde. Sensors Actuators B Chem 181:829–834

    CAS  Google Scholar 

  50. Bhuvaneswari R, Chandiramouli R (2019) First-principles investigation on detection of phosgene gas molecules using phosphorene nanosheet device. Chem Phys Lett 717:99–106

    CAS  Google Scholar 

  51. Ahmadi A, Somayeh P (2015) Selective detection of F2 in the presence of CO , N2 , O2 , and H2 molecules using a ZnO nanocluster. Z Monatsh Chem 146:1233–1239

    Google Scholar 

  52. Rastegar SF, Peyghan AA, Hadipour NL (2013) Response of Si- and Al-doped graphenes toward HCN : a computational study. Appl Surf Sci 265:412–417

    CAS  Google Scholar 

  53. Chigo E, Shakerzadeh E (2018) Adsorption and possible dissociation of glucose by the [BN fullerene:B6] magnetic nanocomposite. In silico studies. Appl Nanosci 8:455

    Google Scholar 

  54. Chandiramouli R (2018) Antimonene nanosheet device for detection of explosive vapors – a first- principles inspection. Chem Phys Lett 708:130–137

    CAS  Google Scholar 

  55. Chigo Anota E, Cortes Arriagada D, Bautista Hernández A, Castro M (2017) In silico characterization of nitric oxide adsorption on a magnetic [B24N36 fullerene/(TiO2)2] nanocomposite. Appl Surf Sci 400:283–292

    Google Scholar 

  56. Bhuvaneswari R, Nagarajan V, Chandiramouli R (2018) Arsenene nanotube as a chemical sensor to detect the presence of explosive vapors: a first-principles insight. J Inorg Organomet Polym Mater 28:2844–2853

    CAS  Google Scholar 

Download references

Funding

The authors wish to express their sincere thanks to Nano Mission Council (No.SR/NM/NS-1011/2017(G)) Department of Science & Technology, India for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Chandiramouli.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhuvaneswari, R., Nagarajan, V. & Chandiramouli, R. Explosive vapor detection using novel graphdiyne nanoribbons—a first-principles investigation. Struct Chem 31, 709–717 (2020). https://doi.org/10.1007/s11224-019-01456-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01456-0

Keywords

Navigation