Skip to main content
Log in

A computational study on the potential application of zigzag carbon nanotubes in Mg-ion batteries

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Although Li-ion batteries are extensively applied for different purposes, they suffer from safety problems, high cost, and short lifetime. Because of low cost, wide availability, and nontoxicity of magnesium, Mg-ion batteries (MIB) might be a good alternative to Li-ion batteries. Here, applying density functional theory calculations, we examined the potential application of zigzag (4,0), (5,0), (6,0), (7,0), and (8,0) carbon nanotubes in the anode of MIBs. We found that by increasing the tube diameter, the Mg2+ adsorption energies are very slightly changed but the Mg adsorption sharply decreased indicating that the adsorption of Mg atom much more depends on the tube diameter and its adsorption energy is the key parameter for generating a cell voltage. We showed that by increasing the curvature of the CNT, the charge transfer is sharply increased upon Mg atom so that in the highest curvature, the interaction becomes ionic in nature with a Jahn-Teller distortion in the CNT structure. However, by increasing the CNT diameter, the cell voltage of MIB increased, from 4.0 V in the (4,0) to 5.3 V in the (8,0) CNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dahn JR, Zheng T, Liu Y, Xue J (1995) Mechanisms for lithium insertion in carbonaceous materials. Science 270:590

    CAS  Google Scholar 

  2. Johannes MD, Swider-Lyons K, Love CT (2016) Oxygen character in the density of states as an indicator of the stability of Li-ion battery cathode materials. Solid State Ionics 286:83–89

    CAS  Google Scholar 

  3. Armand M, Tarascon J-M (2008) Building better batteries. Nature 451:652–657

    CAS  PubMed  Google Scholar 

  4. Kino K, Yonemura M, Ishikawa Y, Kamiyama T (2016) Two-dimensional imaging of charge/discharge by Bragg edge analysis of electrode materials for pulsed neutron-beam transmission spectra of a Li-ion battery. Solid State Ionics 288:257–261

    CAS  Google Scholar 

  5. Prosini PP, Cento C, Carewska M, Masci A (2015) Electrochemical performance of Li-ion batteries assembled with water-processable electrodes. Solid State Ionics 274:34–39

    CAS  Google Scholar 

  6. Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Funct Mater 23:947–958

    CAS  Google Scholar 

  7. “Lithium” in Mineral Commodity Summaries 2012 , U.S. Geological survey, Reston, VA, 2012 , p. 94

  8. “Market,” The lithium site, 2012, http://www.lithiumsite.com/ market.html. (Accessed Feb 2012)

  9. Levi E, Gofer Y, Aurbach D (2009) On the way to rechargeable mg batteries: the challenge of new cathode materials. Chem Mater 22:860–868

    Google Scholar 

  10. Barker J, Saidi MY, Swoyer JL (2003) A sodium-ion cell based on the fluorophosphate compound NaVPO4F. Electrochem Solid-State Lett 6:A1–A4

    CAS  Google Scholar 

  11. Er D, Li J, Naguib M, Gogotsi Y, Shenoy VB (2014) Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl Mater Interfaces 6:11173–11179

    CAS  PubMed  Google Scholar 

  12. Singh N, Arthur TS, Ling C, Matsui M, Mizuno F (2013) A high energy-density tin anode for rechargeable magnesium-ion batteries. Chem Commun 49:149–151

    CAS  Google Scholar 

  13. Huie MM, Bock DC, Takeuchi ES, Marschilok AC, Takeuchi KJ (2015) Cathode materials for magnesium and magnesium-ion based batteries. Coord Chem Rev 287:15–27

    CAS  Google Scholar 

  14. Massé RC, Uchaker E, Cao G (2015) Beyond Li-ion: electrode materials for sodium-and magnesium-ion batteries. Sci China Mater 58:715–766

    Google Scholar 

  15. Besenhard JO, Winter M (2002) Advances in battery technology: rechargeable magnesium batteries and novel negative-electrode materials for lithium ion batteries. ChemPhysChem 3:155–159

    CAS  PubMed  Google Scholar 

  16. Baei MT, Peyghan AA, Bagheri Z (2012) A computational study of AlN nanotube as an oxygen detector. Chin Chem Lett 23:965–968

    CAS  Google Scholar 

  17. Contreras ML, Torres C, Villarroel I, Rozas R (2019) Molecular dynamics assessment of doxorubicin–carbon nanotubes molecular interactions for the design of drug delivery systems. Struct Chem 30:369–384

    CAS  Google Scholar 

  18. Hadipour NL, Ahmadi Peyghan A, Soleymanabadi H (2015) Theoretical study on the Al-doped ZnO nanoclusters for CO chemical sensors. J Phys Chem C 119:6398–6404

    CAS  Google Scholar 

  19. Contreras ML, Villarroel I, Rozas R (2016) Hydrogen physisorption energies for bumpy, saturated, nitrogen-doped single-walled carbon nanotubes. Struct Chem 27:1479–1490

    CAS  Google Scholar 

  20. Yu Y-X (2013) Can all nitrogen-doped defects improve the performance of graphene anode materials for lithium-ion batteries? Physiol Chem Phys 15:16819–16827

    CAS  Google Scholar 

  21. Baei MT, Peyghan AA, Bagheri Z, Tabar MB (2012) B-doping makes the carbon nanocones sensitive towards NO molecules. Phys Lett A 377:107–111

    CAS  Google Scholar 

  22. Anota EC, Cocoletzi GH, Ramírez JFS, Hernández AB (2014) Detection of paracetamol by armchair BN nanotubes: a molecular study. Struct Chem 25:895–901

    CAS  Google Scholar 

  23. Pashangpour M, Peyghan AA (2015) Adsorption of carbon monoxide on the pristine, B-and Al-doped C 3 N nanosheets. J Mol Model 21:116

    PubMed  Google Scholar 

  24. Samadizadeh M, Rastegar SF, Peyghan AA (2015) F−, Cl−, Li+ and Na+ adsorption on AlN nanotube surface: a DFT study. Phys E 69:75–80

    CAS  Google Scholar 

  25. Hamadanian M, Tavangar Z, Noori B (2014) Modification of the electronic properties of zigzag (n = 5–10) and armchair (n = 3, 5) carbon nanotubes by K atom adsorption. Struct Chem 25:1005–1012

    CAS  Google Scholar 

  26. Beheshtian J, Noei M, Soleymanabadi H, Peyghan AA (2013) Ammonia monitoring by carbon nitride nanotubes: a density functional study. Thin Solid Films 534:650–654

    CAS  Google Scholar 

  27. Yang J, Yuan Y, Hua Z (2016) Density functional theory study of interaction of graphene with hypoxanthine, xanthine, and uric acid. Mol Phys 114:2157–2163

    CAS  Google Scholar 

  28. Sharifi N, Ardjmand M, Ahangari MG, Ganji MD (2013) Si-decorated graphene: a superior media for lithium-ions storage. Struct Chem 24:1473–1483

    CAS  Google Scholar 

  29. Subalakshmi P, Sivashanmugam A (2017) CuO nano hexagons, an efficient energy storage material for Li- ion battery application. J Alloys Compd 690:523–531

    CAS  Google Scholar 

  30. Chen B, Chu S, Cai R, Wei S, Hu R, Zhou J (2016) First-principles simulations of lithiation–deformation behavior in silicon nanotube electrodes. Comput Mater Sci 123:44–51

    CAS  Google Scholar 

  31. Peyghan AA, Noei M (2014) A theoretical study of lithium-intercalated pristine and doped carbon nanocones. J Mex Chem Soc 58:46–51

    CAS  Google Scholar 

  32. Gurung A, Naderi R, Vaagensmith B, Varnekar G, Zhou Z, Elbohy H, Qiao Q (2016) Tin selenide—multi-walled carbon nanotubes hybrid anodes for high performance lithium-ion batteries. Electrochim Acta 211:720–725

    CAS  Google Scholar 

  33. Lee SW, Yabuuchi N, Gallant BM, Chen S, Kim B-S, Hammond PT, Shao-Horn Y (2010) High-power lithium batteries from functionalized carbon-nanotube electrodes. Nat Nanotechnol 5:531–537

    CAS  PubMed  Google Scholar 

  34. Li M, Liu Y-J, Zhao J-x, Wang X-g (2015) Si clusters/defective graphene composites as Li-ion batteries anode materials: a density functional study. Appl Surf Sci 345:337–343

    CAS  Google Scholar 

  35. Chen S, Chen P, Wang Y (2011) Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries. Nanoscale 3:4323–4329

    CAS  PubMed  Google Scholar 

  36. Gao B, Bower C, Lorentzen J, Fleming L, Kleinhammes A, Tang X, McNeil L, Wu Y, Zhou O (2000) Enhanced saturation lithium composition in ball-milled single-walled carbon nanotubes. Chem Phys Lett 327:69–75

    CAS  Google Scholar 

  37. Gao B, Kleinhammes A, Tang XP, Bower C, Fleming L, Wu Y, Zhou O (1999) Electrochemical intercalation of single-walled carbon nanotubes with lithium. Chem Phys Lett 307:153–157

    CAS  Google Scholar 

  38. Pless SA, Galpin JD, Niciforovic AP, Ahern CA (2011) Contributions of counter-charge in a potassium channel voltage-sensor domain. Nat Chem Biol 7:617–623

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Santarelli VP, Eastwood AL, Dougherty DA, Horn R, Ahern CA (2007) A cation-π interaction discriminates among sodium channels that are either sensitive or resistant to tetrodotoxin block. J Biol Chem 282:8044–8051

    CAS  PubMed  Google Scholar 

  40. Beene DL, Brandt GS, Zhong W, Zacharias NM, Lester HA, Dougherty DA (2002) Cation− π interactions in ligand recognition by serotonergic (5-HT3A) and nicotinic acetylcholine receptors: the anomalous binding properties of nicotine. Biochemistry 41:10262–10269

    CAS  PubMed  Google Scholar 

  41. Knowles RR, Jacobsen EN Attractive noncovalent interactions in asymmetric catalysis: links between enzymes and small molecule catalysts. Proc Natl Acad Sci 107(2010):20678–20685

  42. Wu T-K, Liu Y-T, Chang C-H, Yu M-T, Wang H-J (2006) Site-saturated mutagenesis of histidine 234 of Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase demonstrates dual functions in cyclization and rearrangement reactions. J Am Chem Soc 128:6414–6419

    CAS  PubMed  Google Scholar 

  43. Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25:1463–1473

    CAS  PubMed  Google Scholar 

  44. Adhikari K, Ray AK (2011) Carbon- and silicon-capped silicon carbide nanotubes: an ab initio study. Phys Lett A 375:1817–1823

    CAS  Google Scholar 

  45. Peyghan AA, Baei MT, Hashemian S, Torabi P (2013) First principles calculations of electric field effect on the (6, 0) zigzag single-walled silicon carbide nanotube for use in nano-electronic circuits. J Clust Sci:1–14

  46. Eslami M, Peyghan AA (2015) DNA nucleobase interaction with graphene like BC3 nano-sheet based on density functional theory calculations. Thin Solid Films 589:52–56

    CAS  Google Scholar 

  47. Peyghan AA, Noei M (2014) The alkali and alkaline earth metal doped ZnO nanotubes: DFT studies. Phys B Condens Matter 432:105–110

    CAS  Google Scholar 

  48. Nagarajan V, Chandiramouli R (2014) TeO2 nanostructures as a NO2 sensor: DFT investigation. Comput Theor Chem 1049:20–27

    CAS  Google Scholar 

  49. Liu X, Zhu B, Gao Y (2016) Structure stability of TiAu4 nanocluster with water adsorption. Phys Lett A 380:1971–1975

    CAS  Google Scholar 

  50. Peyghan AA, Baei MT, Hashemian S (2013) ZnO nanocluster as a potential catalyst for dissociation of H2S molecule. J Clust Sci 24:341–347

    CAS  Google Scholar 

  51. León A, Pacheco M (2011) Electronic and dynamics properties of a molecular wire of graphane nanoclusters. Phys Lett A 375:4190–4197

    Google Scholar 

  52. Peyghan AA, Soleymanabadi H (2015) Computational study on ammonia adsorption on the X 12 Y 12 nano-clusters (X= B, Al and Y= N, P). Curr Sci:1910–1914

  53. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    CAS  Google Scholar 

  54. Boys SF, Bernardi F (1970) Calculation of small molecular interactions by differences of separate total energies—some procedures with reduced errors. Mol Phys 19:553–561

    CAS  Google Scholar 

  55. O’Boyle N, Tenderholt A, Langner K cclib: a library for package-independent computational chemistry algorithms. J Comput Chem 29(2008):839–845

  56. Baker TA, Head-Gordon M (2010) Modeling the charge transfer between alkali metals and polycyclic aromatic hydrocarbons using electronic structure methods. J Phys Chem A 114:10326–10333

    CAS  PubMed  Google Scholar 

  57. Datta D, Li J, Shenoy VB (2014) Defective graphene as a high-capacity anode material for Na-and Ca-ion batteries. ACS Appl Mater Interfaces 6:1788–1795

    CAS  PubMed  Google Scholar 

  58. Meng YS, Arroyo-de Dompablo ME (2009) First principles computational materials design for energy storage materials in lithium ion batteries. Energy Environ Sci 2:589–609

    CAS  Google Scholar 

  59. Gao S, Shi G, Fang H (2016) Impact of cation–π interactions on the cell voltage of carbon nanotube-based Li batteries. Nanoscale 8:1451–1455

    CAS  PubMed  Google Scholar 

  60. Hosseinian A, Khosroshahi ES, Nejati K, Edjlali E, Vessally E (2017) A DFT study on graphene, SiC, BN, and AlN nanosheets as anodes in Na-ion batteries. J Mol Model 23:354–360

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Amir Aslanzadeh.

Ethics declarations

Conflict of interest

The authors declare that he has no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslanzadeh, S.A. A computational study on the potential application of zigzag carbon nanotubes in Mg-ion batteries. Struct Chem 31, 1073–1078 (2020). https://doi.org/10.1007/s11224-019-01485-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01485-9

Keywords

Navigation