Skip to main content
Log in

A modified water cycle evolutionary game theory algorithm to utilize QoS for IoT services in cloud-assisted fog computing environments

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The Internet of Things (IoT) is rapidly gaining popularity as a result of the advancements in portable embedded devices and wireless protocols, enabling a new class of services. On the other hand, edge clouds provide IoT services as a new paradigm called fog computing. As the number of available IoT devices increases, more efficient methods are required to select the optimal combination of services out of several existing candidates in edge clouds while composing more complex IoT workflow tasks. So, cloud-assisted fog computing requires a platform for management, composition and provisioning of IoT services for IoT–cloud integration. Resent works have some weaknesses and did not consider some aspects of fog computing such as low latency, low energy and efficient resource allocation. We propose a cloud-based platform for management of IoT service selection and composition in fog computing to enhance QoS parameters such as bandwidth usage, latency and distributed resource utilization. In particular, we propose a multi-objective evolutionary game theory, enhanced by evaporation-based water cycle algorithm (EG-ERWCA) to optimize CPU usage, power consumption and latency of the IoT workflows in cloud-assisted fog computing environments. Many different real IoT workflows are used for evaluation of the proposed method in comparison with the state-of-art algorithms. Simulation results show that the overall quality of service is improved by 2.66 times compared to rival algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Borgia E (2014) The Internet of Things vision: key features, applications and open issues. Comput Commun 54:1–31. https://doi.org/10.1016/j.comcom.2014.09.008

    Article  Google Scholar 

  2. Zanella A et al (2014) Internet of Things for smart cities. IEEE Internet of Things J 1(1):22–32. https://doi.org/10.1109/JIOT.2014.2306328

    Article  Google Scholar 

  3. Riazul Islam SM et al (2015) The Internet of Things for Healthcare: A Comprehensive Survey. IEEE Access 3:678–708. https://doi.org/10.1109/ACCESS.2015.2437951

    Article  Google Scholar 

  4. Xu LD, He W, Li S (2014) Internet of Things in industries: a survey. IEEE Trans Industr Inf 10(4):2233–2243. https://doi.org/10.1109/TII.2014.2300753

    Article  Google Scholar 

  5. Gartner news at http://www.gartner.com/newsroom/id/3598917

  6. Shah P, Habib M, Sajjad T, Umar M, Babar M (2017) Applications and challenges faced by Interbet of Things—a survey. In: Future Intelligent Vehicular Technologies, International Conference on, 15 September, Lecture Notes of the Insitute for Computer Sciences, Social Informatics and Telecommunications Engineering, 185:182–188. https://doi.org/10.1007/978-3-319-51207-5_18

  7. Zhang W, Sun H, Liu X, Guo X (2014) An incremental tensor factorization approach for web service recommendation. In: 2014 IEEE International Conference on Data Mining Workshop (ICDMW), 14 December. https://doi.org/10.1109/icdmw.2014.176

  8. Wang D, Yang Y, Mi Z (2015) A genetic-based approach to web service composition in geo-distributed cloud environment. Comput Electr Eng 43:129–141. https://doi.org/10.1016/j.compeleceng.2014.10.008

    Article  Google Scholar 

  9. Adhikari M, Amgoth T (2017) Heuristic-based load-balancing algorithm for IaaS cloud. Future Gener Comput Syst 81:156–165. https://doi.org/10.1016/j.future.2017.10.035

    Article  Google Scholar 

  10. Al-Faifi AM et al (2018) Performance prediction model for cloud service selection from smart data. Future Gener Comput Syst 85:97–106. https://doi.org/10.1016/j.future.2018.03.015

    Article  Google Scholar 

  11. Armant V, De Cauwer M, Brown KN, O’Sullivan B (2018) Semi-online task assignment policies for workload consolidation in cloud computing systems. Future Gener Comput Syst 82:89–103. https://doi.org/10.1016/j.future.2017.12.035

    Article  Google Scholar 

  12. Chen F et al (2015) A flexible QoS-aware web service composition method by multi-objective optimization in cloud manufacturing. Comput Ind Eng 99:423–431. https://doi.org/10.1016/j.cie.2015.12.018

    Article  Google Scholar 

  13. Cremene M, Suciu M, Pallez D, Dumitrescu D (2015) Comparative analysis of multi-objective evolutionary algorithms for QoS-aware web service composition. Appl Soft Comput 39:124–139. https://doi.org/10.1016/j.asoc.2015.11.012

    Article  Google Scholar 

  14. Gabrel V, Manouvrier M, Moreau K, Murat C (2017) QoS-aware automatic syntactic service composition problem: complexity and resolution. Future Gener Comput Syst 80:311–321. https://doi.org/10.1016/j.future.2017.04.009

    Article  Google Scholar 

  15. Ramirez A et al (2016) Evolutionary composition of QoS-aware web services: a many-objective perspective. Expert Syst Appl 72:357–370. https://doi.org/10.1016/j.eswa.2016.10.047

    Article  Google Scholar 

  16. Sun G et al (2018) Low-latency orchestration for workflow-oriented service function chain in edge computing. Future Gener Comput Syst 85:116–128. https://doi.org/10.1016/j.future.2018.03.018

    Article  Google Scholar 

  17. Wang Z et al (2018) User mobility aware task assignment for mobile edge computing. Future Gener Comput Syst 85:1–8. https://doi.org/10.1016/j.future.2018.02.014

    Article  Google Scholar 

  18. Chen I, Guo J, Bao F (2014) Trust management for service composition in SOA-based IoT systems. In: Wireless Communications and Networking Conference (WCNC), IEEE 2014, 6–9 April. https://doi.org/10.1109/wcnc.2014.6953138

  19. Liu J et al (2014) A cooperative evolution for QoS-driven IoT service composition. Automatika 54(4):438–447

    Article  Google Scholar 

  20. Yang Z, Li D (2014) IoT information service composition driven by user requirement. In: 17th IEEE International Conference on Computational Science and Engineering, 19–21 December. https://doi.org/10.1109/cse.2014.280

  21. Khanouche ME et al (2016) Energy-centered and QoS-aware services selection for Internet of Things. IEEE Trans Autom Sci Eng 13(3):1256–1269. https://doi.org/10.1109/TASE.2016.2539240

    Article  Google Scholar 

  22. Guijarro L, Pla V, Vidal JR, Naldi M (2017) Game theoritical analysis of service provision for the Internet of Things based on sensor virtualization. IEEE J Sel Areas Commun 35:691–706. https://doi.org/10.1109/jsac.2017.2672239

    Article  Google Scholar 

  23. Botta A, Donato W, Persico V, Pescape A (2016) Integration of cloud computing and Internet of Things: a survey. Future Gen Comput Syst 56:684–700. https://doi.org/10.1016/j.future.2015.09.021

    Article  Google Scholar 

  24. Militano L, Nitti M, Atzori L, Iera A (2015) Using a distributed Shapley-value based approach to ensure navigability in a social network of smart objects. In: 2015 IEEE International Conference on Communications (ICC), 8–12 June. https://doi.org/10.1109/icc.2015.7248402

  25. Satpathy S, Sahoo B, Turuk AK (2018) Sensing and actuation as a service delivery model in cloud edge centric Internet of Things. Future Gener Comput Syst 86:281–296. https://doi.org/10.1016/j.future.2018.04.015

    Article  Google Scholar 

  26. Souza VB et al (2018) Towards a proper service placement in combined Fog-to-Cloud (F2C) architectures. Future Gener Comput Syst 87:1–15. https://doi.org/10.1016/j.future.2018.04.042

    Article  Google Scholar 

  27. Liu Y et al (2018) A crowdsourcing-based topic model for service matchmaking in Internet of Things. Future Gener Comput Syst 87:186–197. https://doi.org/10.1016/j.future.2018.05.005

    Article  Google Scholar 

  28. Khalil EA, Ozdemir S, Tosun S (2018) Evolutionary task allocation in Internet of Things-based application domains. Future Gener Comput Syst 86:121–133. https://doi.org/10.1016/j.future.2018.03.033

    Article  Google Scholar 

  29. Zhou Z, Zhao D, Liu L, Hung PCK (2017) Energy-aware composition for wireless sensor networks as a service. Future Gener Comput Syst 80:299–310. https://doi.org/10.1016/j.future.2017.02.050

    Article  Google Scholar 

  30. Na J, Lin K, Huang Z, Zhou S (2015) An evolutionary game approach on IoT service selection for balancing device energy consumption. In: IEEE 12th International Conference on E-business Engineering, 23–25 October. https://doi.org/10.1109/icebe.2015.63

  31. Kumar N, Chilamkurti N, Misra SC (2015) Bayesian coalition game for the internet of things: an ambient intelligence-based evaluation. IEEE Commun Mag 53(1):48–55. https://doi.org/10.1109/MCOM.2015.7010515

    Article  Google Scholar 

  32. Deb K, Deb D (2014) Analyzing mutation schemes for real-parameter genetic algorithms. Int J Artif Intell Soft Comput 4(1):1–28. https://doi.org/10.1504/IJAISC.2014.059280

    Article  Google Scholar 

  33. Sartakhti J, Manshaei MH, Sadeghi M (2017) MMP-TIMP interactions in cancer invasion: an evolutionary game-theoritical framework. J Theor Biol 412:17–26. https://doi.org/10.1016/j.jtbi.2016.09.019

    Article  MATH  Google Scholar 

  34. Zhang H, Xu Z, Zhou D, Cao J (2017) Waste cooking oil-to-energy under incomplete information: identifying policy options through an evolutionary game. Appl Energy 185(1):547–555. https://doi.org/10.1016/j.apenergy.2016.10.133

    Article  Google Scholar 

  35. Babu S, Mohan U (2017) Press: an integrated approach to evaluating sustainability in supply chains using evolutionary game theory. Comput Oper Res. https://doi.org/10.1016/j.cor.2017.01.008

    Article  MATH  Google Scholar 

  36. Cavalcante E et al (2016) On the interplay of Internet of Things and Cloud computing: a systematic mapping study. Comput Commun 89:17–33. https://doi.org/10.1016/j.comcom.2016.03.012

    Article  Google Scholar 

  37. Bonomi F, Milito R, Natarajan P, Zhu J (2014) Fog computing: a platform for Internet of Things and analytics. Big data and Internet of Things: a roadmap for smart environments. Stud Comput Intell 546:169–186. https://doi.org/10.1007/978-3-319-05029-4_7

    Article  Google Scholar 

  38. Baker T et al (2017) An energy-aware service composition algorithm for multiple cloud-based IoT applications. J Netw Comput Appl 89:96–108. https://doi.org/10.1016/j.jnca.2017.03.008

    Article  Google Scholar 

  39. Easley D, Kleinberg J (2010) Networks, crowds and markets: reasoning about a highly connected world, chapter 7. Cambridge University Press, Cambridge

    Book  Google Scholar 

  40. Meyers RA (2019) Encyclopedia of complexity and systems science, Springer, Berlin, Heidelberg

    Google Scholar 

  41. Ren YC, Suzuki J, Omura S, Hosoya R (2015) Leveraging active-guided evolutionary games for adaptive and stable deployment of DVFS-aware cloud applications. Int J Softw Eng Knowl Eng 25(5):851–870. https://doi.org/10.1142/S0218194015400239

    Article  Google Scholar 

  42. Sadollah A, Eskandar H, Bahreininejad A, Kim JH (2015) Water cycle algorithm with evaporation rate for solving constrained and unconstrained optimization problems. Appl Soft Comput 30(2015):58–71. https://doi.org/10.1016/j.asoc.2015.01.050

    Article  Google Scholar 

  43. Yin X, Yang J (2014) Shortest paths based web service selection in the Internet of Things. J Sens. https://doi.org/10.1155/2014/958350

    Article  Google Scholar 

  44. Ren Y (2014) Cielo: An evolutionary game theoretic framework for virtual machine placement in clouds. In: 2014 International Conference on Future Internet of Things and Cloud (FiCloud), 27–29 August. https://doi.org/10.1109/ficloud.2014.11

  45. City pulse scenarios at http://www.ict-citypulse.eu/scenarios/

  46. Choi J, Jung B, Choi Y, Son S (2017) An adaptive and integrated low-power framework for multicore mobile computing. Mobile Inf Syst. https://doi.org/10.1155/2017/9642958

    Article  Google Scholar 

  47. Jadoon JK (2013) Evaluation of power management strategies on actual multiprocessor platforms. Universite Nice Sophia Antipolis, Nice

    Google Scholar 

  48. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197. https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Sharifian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emami Khansari, M., Sharifian, S. A modified water cycle evolutionary game theory algorithm to utilize QoS for IoT services in cloud-assisted fog computing environments. J Supercomput 76, 5578–5608 (2020). https://doi.org/10.1007/s11227-019-03095-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-019-03095-y

Keywords

Navigation