Skip to main content
Log in

Classification of discrete systems on a square lattice

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the classification up to a Möbius transformation of real linearizable and integrable partial difference equations with dispersion defined on a square lattice by the multiscale reduction around their harmonic solution. We show that the A1, A2, and A3 linearizability and integrability conditions constrain the number of parameters in the equation, but these conditions are insufficient for a complete characterization of the subclass of multilinear equations on a square lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Calogero, “Why are certain nonlinear PDEs both widely applicable and integrable?” in: What is Integrability? (V. E. Zakharov, ed.), Springer, Berlin (1991).

    Google Scholar 

  2. A. Degasperis, S. V. Manakov, and P. M. Santini, Phys. D, 100, 187–211 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Degasperis and M. Procesi, “Asymptotic integrability,” in: Symmetry and Perturbation Theory, SPT98 (A. Degasperis and G. Gaeta, eds.), World Scientific, Singapore (1999), pp. 23–37; A. Degasperis, “Multiscale expansion and integrability of dispersive wave equations,” in: Integrability (Lect. Notes Phys., Vol. 767, A. V. Mikhailov, ed.), Springer, Berlin (2009), pp. 215–244.

    Google Scholar 

  4. Y. Kodama and A. V. Mikhailov, “Obstacles to asymptotic integrability,” in: Algebraic Aspects of Integrable Systems (Prog. Nonlinear Diff. Eq. Their Appl., Vol. 26, A. S. Fokas and I. M. Gelfand, eds.), Birkhäuser, Boston, Mass. (1996), pp. 173–204; Y. Hiraoka and Y. Kodama, “Normal form and solitons,” in: Integrability (Lect. Notes Phys., Vol. 767, A. V. Mikhailov, ed.), Springer, Berlin (2009), pp. 175–214.

  5. A. Degasperis, D. D. Holm, and A. Hone, Theor. Math. Phys., 133, 1463–1474 (2002).

    Article  MathSciNet  Google Scholar 

  6. R. Hernández Heredero, D. Levi, M. Petrera, and C. Scimiterna, J. Phys. A, 41, 315208 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  7. R. Hernández Heredero, D. Levi, M. Petrera, and C. Scimiterna, J. Nonlinear Math. Phys., 15 (Suppl. 3), 323–333 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  8. D. Levi, J. Phys. A, 38, 7677–7689 (2005); arXiv:nlin/0505061v1 (2005).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. M. Agrotis, S. Lafortune, and P. G. Kevrekidis, Discrete Contin. Dyn. Syst., Suppl., 22–29 (2005).

  10. R. Hernández Heredero, D. Levi, M. Petrera, and C. Scimiterna, J. Phys. A, 40, F831–F840 (2007).

    Article  ADS  MATH  Google Scholar 

  11. J. Leon and M. Manna, J. Phys. A, 32, 2845–2869 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. D. Levi and R. Hernández Heredero, J. Nonlinear Math. Phys., 12 (Suppl. 1), 440–448 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  13. D. Levi and M. Petrera, J. Math. Phys., 47, 043509 (2006); arXiv:math-ph/0510084v1 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  14. S. W. Schoombie, J. Comput. Phys., 101, 55–70 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. F. Calogero and W. Eckhaus, Inverse Problems, 3, L27–L32, 229–262 (1987); 4, 11–33 (1987); F. Calogero, A. Degasperis, and X. Ji, J. Math. Phys., 42, 2635–2652 (2001); 41, 6399–6443 (2000); F. Calogero and A. Maccari, “Equations of nonlinear Schrödinger type in 1+1 and 2+1 dimensions obtained from integrable PDEs,” in: Inverse Problems: An Interdisciplinary Study (Adv. Electronics Electron Phys., Vol. 19, P. C. Sabatier, ed.), Acad. Press, London (1987), pp. 463–480.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. C. Scimiterna and D. Levi, SIGMA, 1006, 070 (2010); arXiv:1005.5288v2 [nlin.SI] (2010).

    MathSciNet  Google Scholar 

  17. R. Hernández Heredero, D. Levi, and C. Scimiterna, J. Phys. A, 43, 502002 (2010); arXiv:1011.0141v1 [nlin.SI] (2010).

    Article  MathSciNet  Google Scholar 

  18. C. Scimiterna, “Multiscale techniques for nonlinear difference equations,” Doctoral dissertation, http://www.fis.uniroma3.it/dottoratotesi/ScimiternaSCIMITERNA.pdf, Roma Tre Universitá Degli Studi, Rome (2009).

  19. Y. Kodama, Phys. Lett. A, 107, 245–249 (1985).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Y. Kodama, “Nearly integrable systems: Normal form and solitons,” in: Nonlinear Evolutions (Proc. 4th Workshop on Nonlinear Evolution Equations and Dynamical Systems, Balaruc-les-Bains, 11–25 June 1987, J. J. P. Leon, ed.), World Scientific, Teaneck, N. J. (1988), pp. 559–570.

    Google Scholar 

  21. M. Procesi, “Non linear waves, multiscale methods, and integrability master degree,” Doctoral dissertation, Physics Department, “La Sapienza” University, Rome (1997).

    Google Scholar 

  22. D. Levi and C. Scimiterna, Appl. An., 89, 507–527 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Levi and C. Scimiterna, SIGMA, 1107, 079 (2011).

    MathSciNet  Google Scholar 

  24. D. Levi and R. I. Yamilov, J. Phys. A, 42, 454012 (2009); arXiv:0902.4421v1 [nlin.SI] (2009); 44, 145207 (2011); arXiv:1011.0070v2 [nlin.SI] (2010).

    Article  MathSciNet  ADS  Google Scholar 

  25. C. Scimiterna, B. Grammaticos, and A. Ramani, J. Phys. A, 44, 032002 (2011).

    Article  MathSciNet  ADS  Google Scholar 

  26. V. E. Adler, A. I. Bobenko, and Yu. B. Suris, Commun. Math. Phys., 233, 513–543 (2003); arXiv:nlin/0202024v2 (2002).

    MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Hernández Heredero.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 172, No. 2, pp. 250–263, August, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernández Heredero, R., Levi, D. & Scimiterna, C. Classification of discrete systems on a square lattice. Theor Math Phys 172, 1097–1108 (2012). https://doi.org/10.1007/s11232-012-0098-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-012-0098-2

Keywords

Navigation