Skip to main content
Log in

Modelling revenue generation in a dynamically priced mobile telephony service

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Dynamic pricing has been used extensively in specific markets for many years but recent years have seen an interest in the utilization of this approach for the deployment of novel and attractive tariff structures for mobile communication services. This paper describes the development and operation of an agent based model (ABM) for subscriber behavior in a dynamically priced mobile telephony network. The design of the ABM was based on an analysis of real call detail records recorded in a Uganda mobile telephony network in which dynamic pricing was deployed. The ABM includes components which simulate subscriber calling behavior, mobility within the network and social linkages. Using this model, this paper reports on an investigation of a number of alternative strategies for the dynamic pricing algorithm which indicate that the network operator will likely experience revenue losses ranging from a 5 %, when the pricing algorithm is based on offering high value subscriber cohort enhanced random discounts compared to a lower value subscriber cohort, to 30 %, when the priding algorithm results in the discount on offer in a cell being inversely proportional to the contemporary cell load. Additionally, the model appears to suggest that the use of optimization algorithms to control the level of discount offered in cells would likely result in discount simply converging to a “no-discount” scenario. Finally, commentary is offered on additional factors which need to be considered when interpreting the results of this work such as the impact of subscriber churn on the size of the subscriber base and the technical and marketing challenges of deploying the various dynamic pricing algorithms which have been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Ahn, J.-H., Han, S.-P., & Lee, Y.-S. (2006). Customer churn analysis: Churn determinants and mediation effects of partial defection in the korean mobile telecommunications service industry. Telecommunications Policy, 30, 552–568. doi:10.1016/j.telpol.2006.09.006.

    Article  Google Scholar 

  2. Albert, R., & Barabási, A.-L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1), 47–97.

    Article  Google Scholar 

  3. Allcott, H. (2011). Rethinking real-time electricity pricing. Resource and Energy Economics, 33(4), 820–842.

    Article  Google Scholar 

  4. Axelrod, R. (1997). The complexity of cooperation: Agent-based models of competition and collaboration. Chichester, West Sussex: Princeton University Press.

    Google Scholar 

  5. Bankes, S. C. (2002). Agent-based modeling: A revolution? Proceedings of the National Academy of Sciences, 99(suppl 3), 7199–7200.

    Article  Google Scholar 

  6. Barabási, A.-L. (2009). Scale-free networks: A decade and beyond. Science, 325(5939), 412–413.

    Article  Google Scholar 

  7. Barrat, A., Barthélemy, M., Pastor-Satorras, R., & Vespignani, A. (2004). The architecture of complex weighted networks. National Academy of Sciences of the United States of America, 101(11), 3747–3752.

    Article  Google Scholar 

  8. Barrat, A., Barthélemy, M., & Vespignani, A. (2005). The effects of spatial constraints on the evolution of weighted complex networks. Journal of Statistical Mechanics: Theory and Experiment, p. P05003.

  9. Barrett, C.L., Bisset, K.R., Eubank, S.G., Feng, X., & Marathe, M.V. (2008). Episimdemics: An efficient algorithm for simulating the spread of infectious disease over large realistic social networks. In International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2008 (pp. 1–12).

  10. Bayoumi, A. E.-M., Saleh, M., Atiya, A. F., & Aziz, H. A. (2013). Dynamic pricing for hotel revenue management using price multipliers. Journal of Revenue Pricing Management, 12, 271–285.

    Article  Google Scholar 

  11. Becker, R., Cáceres, R., Hanson, K., Loh, J. M., Urbanek, S., Varshavsky, A., & Volinsky, C. (2011a). Clustering anonymized mobile call detail records to find usage groups. http://www.research.att.com/techdocs/TD_100397. Accessed 16 Sep 2015.

  12. Becker, R. A., Cáceres, R., Hanson, K., Loh, J. M., Urbanek, S., Varshavsky, A., et al. (2011b). A tale of one city: Using cellular network data for urban planning. Pervasive Computing, IEEE, 10(4), 18–26.

    Article  Google Scholar 

  13. Blondel, V., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 200810(10), P10,008.

    Article  Google Scholar 

  14. Bonabeau, E. (2002). Agent-based modeling: Methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences, 99(suppl 3), 7280–7287.

    Article  Google Scholar 

  15. Bowman, A. W., & Azzalini, A. (1997). Applied smoothing techniques for data analysis : The kernel approach with S-Plus illustrations: The kernel approach with S-Plus illustrations. Oxford: Oxford University Press.

    Google Scholar 

  16. Calabrese F., Pereira F., Di Lorenzo G., Liu L., & Ratti, C. (2010). The geography of taste: Analyzing cell-phone mobility and social events. In P. Floren, A. Krger, & M. Spasojevic (Eds.), Pervasive computing, lecture notes in computer science (Vol. 6030, pp. 22–37). Berlin: Springer, doi:10.1007/978-3-642-12654-3_2.

  17. Candia, J., González, M. C., Wang, P., Schoenharl, T., Madey, G., & Barabási, A.-L. (2008). Uncovering individual and collective human dynamics from mobile phone records. Journal of Physics A: Mathematical and Theoretical, 41(22), 224015.

    Article  Google Scholar 

  18. Cebrián, M., Pentland, A., & Kirkpatrick, S. (2010). Disentangling social networks inferred from call logs. CoRR.arXiv:1008.1357.

  19. Chaogui, K., Song, G., Xing, L., Yu, X., Yihong, Y., Yu, L., & Xiujun, M. (2010). Analyzing and geo-visualizing individual human mobility patterns using mobile call records. In 18th International conference on geoinformatics (pp. 1–7).

  20. Chappin, E. J., & Afman, M. R. (2013). An agent-based model of transitions in consumer lighting: Policy impacts from the e.u. phase-out of incandescents. Environmental Innovation and Societal Transitions, 7, 16–36.

    Article  Google Scholar 

  21. Christ, S. (2011). Operationalizing dynamic pricing models. Wiesbaden: Gabler, Wiesbaden GmbH.

    Book  Google Scholar 

  22. Chung, J., & Li, D. (2013). A simulation of the impacts of dynamic price management for perishable foods on retailer performance in the presence of need-driven purchasing consumers. Journal of The Operational Research Society, 65(8), 1177–1188.

    Article  Google Scholar 

  23. Crooks, A., Castle, C., & Batty, M. (2008). Key challenges in agent-based modelling for geo-spatial simulation. Computers, Environment and Urban Systems, 32(6), 417–430.

    Article  Google Scholar 

  24. Dasgupta, K., Singh, R., Viswanathan, B., Chakraborty, D., Mukherjea, S., Nanavati, A.A., & Joshi, A. (2008). Social ties and their relevance to churn in mobile telecom networks. In Proceedings of the 11th international conference on extending database technology: Advances in database technology, EDBT ’08 (pp. 668–677). New York: ACM. doi:10.1145/1353343.1353424.

  25. Dolgui, A., & Proth, J.-M. (2010). Supply chain engineering: Useful methods and techniques. New York: Springer.

    Book  Google Scholar 

  26. Donovan, K. P., & Martin, A. K. (2014). The rise of african sim registration: The emerging dynamics of regulatory change. First Monday, 19, 1–2.

    Article  Google Scholar 

  27. E3 (2006). A survey of time-of-use (tou) pricing and demand-response (dr) programs. Tech. rep., Energy & Environmental Economics, https://ethree.com/downloads/DR%20Articles/Valuation%20of%20DR/PDFAsurveyofTOU-DR.

  28. Eagle, N., Montjoye, D., & Bettencourt, L. (2009). Community computing: Comparisons between rural and urban societies using mobile phone data. In International conference on computational science and engineering, CSE ’09 (Vol 4, pp. 144–150).

  29. Ehrler, L., Fleurke, M., Purvis, M., Tony, B., & Savarimuthu, R. (2005). Agent-based workflow management systems (wfmss), jbees: a distributed and adaptive wfms with monitoring and controlling capabilities. Journal of Information Systems and E-Business Management, 4(1), 18.

    Google Scholar 

  30. El-Sayed, A. M., Scarborough, P., Seemann, P., Seemann, L., & Galea, S. (2012). Social network analysis and agent-based modeling in social epidemiology. Epidemiologic Perspectives & Innovations, 9, 1.

    Article  Google Scholar 

  31. Expert, P., Evans, T., Blondel, V., & Lambiotte, R. (2011). Uncovering space-independent communities in spatial networks. National Academy of Sciences, 108(19), 7663–7668.

    Article  Google Scholar 

  32. Faruqui, A., & George, S. (2005). Quantifying customer response to dynamic pricing. The Electricity Journal, 18(4), 53–63.

    Article  Google Scholar 

  33. Fishburn, P.C., & Odlyzko, A.M. (1998). Dynamic behavior of differential pricing and quality of service options for the internet. In Proceedings of the first international conference on information and computation economies, ICE ’98 (pp. 128–139). New York: ACM. doi:10.1145/288994.289024.

  34. Fitkov-Norris, E., & Khanifar, A. (2000). Dynamic pricing in mobile communication systems. In First international conference on 3G mobile communication technologies (Conf. Publ. No. 471) (pp. 416–420).

  35. Fitkov-Norris, E., & Khanifar, A. (2001). Dynamic pricing in cellular networks, a mobility model with a provider-oriented approach. In Second international conference on 3G mobile communication technologies (Conf. Publ. No. 477) (pp. 63–67).

  36. Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3–5), 75–174.

    Article  Google Scholar 

  37. Frías-Martínez, E., Williamson, G., & Frías-Martínez, V. (2011). An agent-based model of epidemic spread using human mobility and social network information. In IEEE third international conference on privacy, security, risk and trust (passat) and IEEE third international conference on social computing (socialcom) (pp. 57–64).

  38. Gerwen, R.V., Jaarsma, S., Wilhite, R., & Kema (2006). Smart metering. Tech. rep., Leonardo Energy.

  39. Gilbert, N. (2008). Agent-based models. New York: SAGE Publications.

    Book  Google Scholar 

  40. Gonzalez, M. C., Hidalgo, C. A., & Barabasi, A.-L. (2008). Understanding individual human mobility patterns. Nature, 453(7196), 779–782.

    Article  Google Scholar 

  41. Guo, D., Ren, B., & Wang, C. (2008). Integrated agent-based modeling with GIS for large scale emergency simulation, lecture notes in computer science (Vol. 5370, chap. 68). Berlin: Springer.

  42. Hamill, L., & Gilbert, N. (2010). Simulating large social networks in agent-based models: A social circle model. Tech. rep., Centre for Research in Social Simulation.

  43. Hassouna, M.B. (2012). Agent based modelling and simulation: An examination of customer retention in the uk mobile market. PhD thesis, Brunel University London.

  44. Hidalgo, C. A., & Rodriguez-Sickert, C. (2008). The dynamics of a mobile phone network. Physica A: Statistical Mechanics and Its Applications, 387(12), 3017–3024.

    Article  Google Scholar 

  45. Ihler, A. (2007). Kernel density estimation toolbox for matlab. http://www.ics.uci.edu/~ihler/code/kde.html. Accessed 16 Sep 2015.

  46. Isaacman, S., Becker, R., Cáceres, R., Kobourov, S., Martonosi, M., Rowland, J., & Varshavsky, A. (2011). Identifying important places in people’s lives from cellular network data. In Proceedings of the 9th international conference on pervasive computing, Pervasive’11 (pp. 133–151). Berlin: Springer.

  47. Isaacman, S., Becker, R., Cáceres, R., Martonosi, M., Rowland, J., Varshavsky, A., & Willinger, W. (2012). Human mobility modeling at metropolitan scales. In Proceedings of the 10th international conference on mobile systems, applications, and services, MobiSys ’12 (pp. 239–252). New York: ACM. doi:10.1145/2307636.2307659.

  48. ITU (2014). The world in 2014: Ict facts and figures. https://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2014-e. Accessed 16 Sep 2015.

  49. Jessoe, K., Rapson, D., & Smith, J.B. (2012). The effect of a mandatory time-of-use pricing reform on residential electricity use. In American Economic Association.

  50. Jung, W.-S., Wang, F., & Stanley, H. (2008). Gravity model in the korean highway. Europhysics Letters, 81, 48,005.

    Article  Google Scholar 

  51. Kannan, P. K., & Kopalle, P. K. (2001). Dynamic pricing on the internet: Importance and implications for consumer behavior. International Journal of Electronic Commerce, 5(3), 63–83.

    Google Scholar 

  52. Kitchin, R., & Dodge, M. (2000). Placing cyberspace : Geography, community and identity. Information Technology, Education and Society, 1(2), 25–46.

    Google Scholar 

  53. Leloup, B., & Deveaux, L. (2001). Dynamic pricing on the internet: Theory and simulations. Electronic Commerce Research, 1(3), 265–276.

    Article  Google Scholar 

  54. Levin, Y., McGill, J., & Nediak, M. (2007). Price guarantees in dynamic pricing and revenue management. Operations Research, 55(1), 75–97.

    Article  Google Scholar 

  55. Liben-Nowell, D., Novak, J., Kumar, R., Raghavan, P., & Tomkins, A. (2005). Geographic routing in social networks. National Academy of Sciences, 102(33), 11,623–11,628.

    Article  Google Scholar 

  56. Madey, G., Gao, Y., Freeh, V., Tynan, R., & Hoffman, C. (2003). Agent-based modeling and simulation of collaborative social networks. In Ninth Americas conference on information systems.

  57. Martínez, F.L., & Morales, Y.O. (2012). Agent-based simulation approach to urban dynamic modeling. Tech. rep., Universidad Nacional de Colombia.

  58. Matthews, R. B., Gilbert, N. G., Roach, A., Polhill, J. G., & Gotts, N. M. (2007). Agent-based land-use models: a review of applications. Landscape Ecology, 22(10), 1447–1459.

    Article  Google Scholar 

  59. McAfee, R. P., & Velde, V. T. (2006). Dynamic pricing in the airline industry. Tech. rep., California Institute of Technology http://mcafee.cc/Papers/PDF/DynamicPriceDiscrimination.

  60. Mirsarraf, S.M., & Mansoori, A.R. (2008). Comparison of telecommunication service providers’ pricing strategies for packet based services. In International symposium on telecommunications, IST 2008 (pp. 30–35).

  61. Molina-Markham, A., Danezis, G., Fu, K., Shenoy, P., & Irwin, D. (2012). Designing privacy-preserving smart meters with low-cost microcontrollers, lecture notes in computer science (Vol. 7397, chap. 18, pp. 239–253). Berlin: Springer.

  62. Nanavati, A. A., Singh, R., Chakraborty, D., Dasgupta, K., Mukherjea, S., Das, G., et al. (2008). Analyzing the structure and evolution of massive telecom graphs. IEEE Transactions on Knowledge and Data Engineering, 20(5), 703–718.

    Article  Google Scholar 

  63. Newman, M. E. J. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences, 103(23), 8577–8582.

    Article  Google Scholar 

  64. North, M. J., Macal, C. M., Aubin, J. S., Thimmapuram, P., Bragen, M., Hahn, J., et al. (2010). Multiscale agent-based consumer market modeling. Complexity, 15(5), 37–47.

    Google Scholar 

  65. Noulas, A., Scellato, S., Lambiotte, R., Pontil, M., & Mascolo, C. (2012). A tale of many cities: Universal patterns in human urban mobility. PLoS ONE, 7, 5.

    Article  Google Scholar 

  66. Olivré, A. (2004). Call admission control and dynamic pricing in a gsm/gprs cellular network. PhD thesis, Trinity College Dublin, the University of Dublin.

  67. Onnela, J.-P., Saramaki, J., Hyvonen, J., Szabó, G., Lazer, D., Kaski, K., et al. (2007). Structure and tie strengths in mobile communication networks. Proceedings of the National Academy of Sciences, 104(18), 7332–7336.

    Article  Google Scholar 

  68. Parker, D. C., Manson, S. M., Janssen, M. A., Hoffmann, M. J., & Deadman, P. (2003). Multi-agent systems for the simulation of land-use and land-cover change: A review. Annals of the Association of American Geographers, 93(2), 314–337. doi:10.1111/1467-8306.9302004.

    Article  Google Scholar 

  69. Pattavina, A., & Parini, A. (2005). Modelling voice call interarrival and holding time distributions in mobile networks. In 19th International teletraffic congress. Beijing. http://home.deib.polimi.it/pattavina/pub_archive/conf-ITC05.

  70. Paul, U., Subramanian, A.P., Buddhikot, M.M., & Das, S.R. (2011). Understanding traffic dynamics in cellular data networks. In IEEE Proceedings of the INFOCOM (pp. 882–890).

  71. Popescu, I., & Wu, Y. (2007). Dynamic pricing strategies with reference effects. Operations Research, 55(3), 413–429.

    Article  Google Scholar 

  72. Qi, Y., Tian, Z., Deyong, H., Bin, W., Nan, D., & Bai, W. (2008). Cell phone mini challenge award: Social network accuracy exploring temporal communication in mobile call graphs. In IEEE symposium on visual analytics science and technology, VAST ’08.

  73. Qin, Z., Xifan, W., & Min, F. (2009). Optimal implementation strategies for critical peak pricing. In 6th international conference on the European energy market, EEM 2009 (pp. 1–6).

  74. Rand, W., & Rust, R. T. (2011). Agent-based modeling in marketing: Guidelines for rigor. International Journal of Research in Marketing, 28(3), 181–193.

    Article  Google Scholar 

  75. Said, L.B., Bouron, T., & Drogoul, A. (2002). Agent-based interaction analysis of consumer behavior. In Proceedings of the first international joint conference on autonomous agents and multiagent systems: Part 1 (pp. 184–190). New York: ACM. AAMAS ’02. doi:10.1145/544741.544787.

  76. Samadi, P., Mohsenian-Rad, A.-H., Schober, R., Wong, V. W., & Jatskevich, J. (2010). Optimal real-time pricing algorithm based on utility maximization for smart grid. In First IEEE international conference on smart grid communications, SmartGridComm (pp. 415–420).

  77. Samanidou, E., Zschischang, E., Stauffer, D., & Lux, T. (2007). Agent-based models of financial markets. Reports on Progress in Physics, 70, 3.

    Article  Google Scholar 

  78. Schwarz, N., & Ernst, A. (2009). Agent-based modeling of the diffusion of environmental innovations: An empirical approach. Technological Forecasting and Social Change, 76(4), 497–511.

    Article  Google Scholar 

  79. Seshadri, M., Machiraju, S., Sridharan, A., Bolot, J., Faloutsos, C., & Leskove, J. (2008). Mobile call graphs: Beyond power-law and lognormal distributions. In Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’08 (pp. 596–604). New York: ACM. doi:10.1145/1401890.1401963.

  80. Singer, H. M., Singer, I., & Herrmann, H. J. (2009). Agent-based model for friendship in social networks. Physical Review E, 80(2), 026,113.

    Article  Google Scholar 

  81. Song, C., Qu, Z., Blumm, N., & Barabási, A.-L. (2010). Limits of predictability in human mobility. Science, 327(5968), 1018–1021.

    Article  Google Scholar 

  82. Soto, V., & Frías-Martínez, E. (2011). Robust land use characterization of urban landscapes using cell phone data. In The first workshop on pervasive urban applications. San Francisco.

  83. Tepfenhart, W., Jiacun, W., & Rosca, D. (2009). Agent based emergency response workflow management. In IEEE/INFORMS international conference on service operations, logistics and informatics. SOLI ’09 (pp. 140–146).

  84. Twomey, P., & Cadman, R. (2002). Agent-based modelling of customer behaviour in the telecoms and media markets. Info, 4(1), 8.

    Article  Google Scholar 

  85. UCC (2012) 2011/12 half year market performance review. http://www.ucc.co.ug/files/downloads/2011-12%20Half%20Year%20Market%20Performance%20Review%20New%20(1). Accessed 16 Sep 2015.

  86. Vieira, M.R., Frías-Martínez, V., Oliver, N., Frías-Martínez, E. (2010). Characterizing dense urban areas from mobile phone-call data: Discovery and social dynamics. In IEEE second international conference on social computing (SocialCom) (pp. 241–248).

  87. Walsh, F., & Pozdnoukhov, A. (2011). Spatial structure and dynamics of urban communities. http://core.ac.uk/download/pdf/11526781. Accessed 16 Sep 2015.

  88. Wang, H., & Kilmartin, L. (2014). Comparing rural and urban social and economic behavior in uganda: Insights from mobile voice service usage. Journal of Urban Technology, 21(2), 61–89.

    Article  Google Scholar 

  89. Wang, P., González, M. C., Hidalgo, C. A., & Barabási, A.-L. (2009). Understanding the spreading patterns of mobile phone viruses. Science, 324(5930), 1071–1076.

    Article  Google Scholar 

  90. Willkomm, D., Machiraju, S., Bolot, J., & Wolisz, A. (2008). Primary users in cellular networks: A large-scale measurement study. In 3rd IEEE symposium on new frontiers in dynamic spectrum access networks, DySPAN 2008 (pp. 1–11).

  91. Yuan, Y., Raubal, M., & Liu, Y. (2011). Correlating mobile phone usage and travel behavior: A case study of Harbin, China. Computers, Environment and Urban Systems, 36(2), 118–130.

    Article  Google Scholar 

  92. Zang, H., & Bolot, J.C. (2007). Mining call and mobility data to improve paging efficiency in cellular networks. In Proceedings of the 13th annual ACM international conference on mobile computing and networking, MobiCom ’07 (pp. 123–134). New York: ACM.

  93. Zhang, T., & Zhang, D. (2007). Agent-based simulation of consumer purchase decision-making and the decoy effect. Journal of Business Research, 60(8), 912–922.

    Article  Google Scholar 

Download references

Acknowledgments

This research is funded under the Enterprise Partnership Program of the Irish Research Council (IRC) with co-funding from Tango Telecom Limited. The authors would also like to thank the World Bank for providing them with access to data and images used in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Fay, D., Brown, K.N. et al. Modelling revenue generation in a dynamically priced mobile telephony service. Telecommun Syst 62, 711–734 (2016). https://doi.org/10.1007/s11235-015-0106-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-015-0106-6

Keywords

Navigation