Skip to main content

Advertisement

Log in

Evidence for antioxidants consumption in the coronary blood of patients with an acute myocardial infarction

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Blood flow arrest and reperfusion during myocardial infarction (MI) cause myocyte and endothelium injury through oxidative stress and inflammation, both of which involve Reactive Oxygen Species (ROS) and peroxides that consume antioxidant defenses. The aim of this study was to determine whether serum from the occluded coronary vessel has impaired anti-oxidative defenses as compared to serum from aortic blood or from the periphery of healthy controls. Forty-seven patients (44 men) were included for study. Inclusion criteria were chest pain, ST elevation, and cardiac troponin increase. A photoreaction producing a standardized amount of singlet oxygen (1O2), an excited form of oxygen, was performed in serum samples obtained during primary percutaneous coronary intervention (PCI). Immediately after laser light delivery to 5 % sera containing 5 µg/mL rose bengal, dichloro-dihydro-fluorescein (DCFH) was added and its post-oxidation transformation into the fluorescent DCF, was recorded. At least 5 h after the start of symptoms, the mean secondary ROS production after 1O2 delivery was increased in coronary sera (p < 0.001), but in aortic blood remained similar to that of healthy controls. The peak troponin value correlated with DCF fluorescence throughout the interval between symptoms onset and PCI. A high fluorescence was associated with a higher risk of MACE. These results show that oxidants secondary to 1O2 are increased in occluded vessels during AMI in parallel to c-troponin, demonstrating that antioxidants are consumed. A O2 increase during reperfusion would thus extend the damage resulting from IDM necrosis. The effect of conditioning during PCI could be studied using the described method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

1O2 :

Singlet oxygen

AMI:

Acute myocardial infarction

AUC:

Area under the curve

DCF:

Dichlorofluorescein (oxidized, fluorescent)

DCF-DA:

Dichlorofluorescein diacetate

DCFH:

Dichlorofluorescein (reduced, non fluorescent)

MACE:

Major adverse cardiac events

RB:

Rose bengal

ROS:

Reactive oxygen species

SD:

Standard deviation

SOS:

Secondary reactive oxygen species and peroxides

References

  1. Fearon IM, Faux SP (2009) Oxidative stress and cardiovascular disease: novel tools give (free) radical insight. J Mol Cell Cardiol 47(3):372–381

    Article  PubMed  CAS  Google Scholar 

  2. Svilaas T, Vlaar PJ, van der Horst IC, Diercks GF, de Smet BJ, van den Heuvel AF, Anthonio RL, Jessurun GA, Tan ES, Suurmeijer AJ, Zijlstra F (2008) Thrombus aspiration during primary percutaneous coronary intervention. N Engl J Med 358(6):557–567

    Article  PubMed  CAS  Google Scholar 

  3. Vlaar PJ, Svilaas T, van der Horst IC, Diercks GF, Fokkema ML, de Smet BJ, van den Heuvel AF, Anthonio RL, Jessurun GA, Tan ES, Suurmeijer AJ, Zijlstra F (2008) Cardiac death and reinfarction after 1 year in the Thrombus Aspiration during Percutaneous coronary intervention in Acute myocardial infarction Study (TAPAS): a 1-year follow-up study. Lancet 371(9628):1915–1920

    Article  PubMed  Google Scholar 

  4. Perrelli MG, Pagliaro P, Penna C (2011) Ischemia/reperfusion injury and cardioprotective mechanisms: role of mitochondria and reactive oxygen species. World J Cardiol 3(6):186–200

    Article  PubMed  Google Scholar 

  5. Becker LB (2004) New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovasc Res 61(3):461–470

    Article  PubMed  CAS  Google Scholar 

  6. Ovize M, Baxter GF, Di Lisa F, Ferdinandy P, Garcia-Dorado D, Hausenloy DJ, Heusch G, Vinten-Johansen J, Yellon DM, Schulz R (2010) Postconditioning and protection from reperfusion injury: where do we stand? Position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res 87(3):406–423

    Article  PubMed  CAS  Google Scholar 

  7. Harling L, Rasoli S, Vecht JA, Ashrafian H, Kourliouros A, Athanasiou T (2011) Do antioxidant vitamins have an anti-arrhythmic effect following cardiac surgery? A meta-analysis of randomised controlled trials. Heart 97(20):1636–1642

    Article  PubMed  CAS  Google Scholar 

  8. Dhalla NS, Elmoselhi AB, Hata T, Makino N (2000) Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc Res 47(3):446–456

    Article  PubMed  CAS  Google Scholar 

  9. Andersen HR, Nielsen JB, Nielsen F, Grandjean P (1997) Antioxidative enzyme activities in human erythrocytes. Clin Chem 43(4):562–568

    PubMed  CAS  Google Scholar 

  10. Olivier D, Douillard S, Lhommeau I, Bigot E, Patrice T (2009) Secondary oxidants in human serum exposed to singlet oxygen: the influence of hemolysis. Photochem Photobiol Sci 8(10):1476–1486

    Article  PubMed  CAS  Google Scholar 

  11. Redmond RW, Gamlin JN (1999) A compilation of singlet oxygen yields from biologically relevant molecules. Photochem Photobiol 70(4):391–475

    PubMed  CAS  Google Scholar 

  12. McColl AJ, Keeble T, Hadjinikolaou L, Cohen A, Aitkenhead H, Glenville B, Richmond W (1998) Plasma antioxidants: evidence for a protective role against reactive oxygen species following cardiac surgery. Ann Clin Biochem 35(Pt 5):616–623

    PubMed  CAS  Google Scholar 

  13. Yusuf S, Dagenais G, Pogue J, Bosch J, Sleight P (2000) Vitamin E supplementation and cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 342(3):154–160

    Article  PubMed  CAS  Google Scholar 

  14. De Vecchi E, Pala MG, Di Credico G, Agape V, Paolini G, Bonini PA, Grossi A, Paroni R (1998) Relation between left ventricular function and oxidative stress in patients undergoing bypass surgery. Heart 79(3):242–247

    PubMed  Google Scholar 

  15. Bartosz G (2010) Non-enzymatic antioxidant capacity assays: limitations of use in biomedicine. Free Radic Res 44(7):711–720

    Article  PubMed  CAS  Google Scholar 

  16. Waring WS, Mishra V, Maxwell SR (2003) Comparison of spectrophotometric and enhanced chemiluminescent assays of serum antioxidant capacity. Clin Chim Acta 338(1–2):67–71

    Article  PubMed  CAS  Google Scholar 

  17. Tsimikas S (2006) Measures of oxidative stress. Clin Lab Med 26 (3):571–590, v–vi

    Google Scholar 

  18. Snyder JW, Skovsen E, Lambert JD, Poulsen L, Ogilby PR (2006) Optical detection of singlet oxygen from single cells. Phys Chem Chem Phys 8(37):4280–4293

    Article  PubMed  CAS  Google Scholar 

  19. Douillard S, Lhommeau I, Foursac A, Aillet L, Bigot E, Patrice T (2010) Biophysical parameters influencing secondary oxidants activation in human serum exposed to singlet oxygen. J Photochem Photobiol B 102(3):224–231

    Article  PubMed  Google Scholar 

  20. Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53(6):1841–1856

    Article  PubMed  CAS  Google Scholar 

  21. Kon T, Tanigawa T, Hayamizu K, Shen M, Tsuji T, Naito Y, Yoshikawa T (2004) Singlet oxygen quenching activity of human serum. Redox Rep 9(6):325–330

    Article  PubMed  CAS  Google Scholar 

  22. Tanielian C, Mechin R, Seghrouchni R, Schweitzer C (2000) Mechanistic and kinetic aspects of photosensitization in the presence of oxygen. Photochem Photobiol 71(1):12–19

    Article  PubMed  CAS  Google Scholar 

  23. Girotti AW (2008) Translocation as a means of disseminating lipid hydroperoxide-induced oxidative damage and effector action. Free Radic Biol Med 44(6):956–968

    Article  PubMed  CAS  Google Scholar 

  24. Wright A, Hawkins CL, Davies MJ (2003) Photo-oxidation of cells generates long-lived intracellular protein peroxides. Free Radic Biol Med 34(6):637–647

    Article  PubMed  CAS  Google Scholar 

  25. Badwey JA, Karnovsky ML (1980) Active oxygen species and the functions of phagocytic leukocytes. Annu Rev Biochem 49:695–726

    Article  PubMed  CAS  Google Scholar 

  26. Kanofsky JR (1989) Singlet oxygen production by biological systems. Chem Biol Interact 70(1–2):1–28

    Article  PubMed  CAS  Google Scholar 

  27. Hampton MB, Kettle AJ, Winterbourn CC (1998) Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92(9):3007–3017

    PubMed  CAS  Google Scholar 

  28. Weishaupt KR, Gomer CJ, Dougherty TJ (1976) Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor. Cancer Res 36(7 Pt 1):2326–2329

    PubMed  CAS  Google Scholar 

  29. Hafer K, Iwamoto KS, Schiestl RH (2008) Refinement of the dichlorofluorescein assay for flow cytometric measurement of reactive oxygen species in irradiated and bystander cell populations. Radiat Res 169(4):460–468

    Article  PubMed  CAS  Google Scholar 

  30. Summa D, Spiga O, Bernini A, Venditti V, Priora R, Frosali S, Margaritis A, Di Giuseppe D, Niccolai N, Di Simplicio P (2007) Protein-thiol substitution or protein dethiolation by thiol/disulfide exchange reactions: the albumin model. Proteins 69(2):369–378

    Article  PubMed  CAS  Google Scholar 

  31. Wu G, Fang YZ, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr 134(3):489–492

    PubMed  CAS  Google Scholar 

  32. Kip KE, Hollabaugh K, Marroquin OC, Williams DO (2008) The problem with composite end points in cardiovascular studies: the story of major adverse cardiac events and percutaneous coronary intervention. J Am Coll Cardiol 51(7):701–707

    Article  PubMed  Google Scholar 

  33. Moe KT, Wong P (2010) Current trends in diagnostic biomarkers of acute coronary syndrome. Ann Acad Med Singapore 39(3):210–215

    PubMed  Google Scholar 

  34. Pahor M, Elam MB, Garrison RJ, Kritchevsky SB, Applegate WB (1999) Emerging noninvasive biochemical measures to predict cardiovascular risk. Arch Intern Med 159(3):237–245

    Article  PubMed  CAS  Google Scholar 

  35. Lhommeau I, Douillard S, Bigot E, Benoit I, Krempf M, Patrice T (2011) Serum resistance to singlet oxygen in patients with diabetes mellitus in comparison to healthy donors. Metabolism 60(9):1340–1348

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Acknowledgments to the Fondation pour la Recherche Médicale, the Ligue Nationale contre le Cancer, the Etablissement Français du Sang and Dr J Ashton-Chess for English translation.

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Patrice.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerin, P., Bigot, E. & Patrice, T. Evidence for antioxidants consumption in the coronary blood of patients with an acute myocardial infarction. J Thromb Thrombolysis 35, 41–47 (2013). https://doi.org/10.1007/s11239-012-0774-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-012-0774-y

Keywords

Navigation