Skip to main content
Log in

Flow of a Weakly Conducting Fluid in a Channel Filled with a Porous Medium

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

We investigate the fully developed flow in a fluid-saturated porous medium channel with an electrically conducting fluid under the action of a parallel Lorentz force. The Lorentz force varies exponentially in the vertical direction due to low fluid electrical conductivity and the special arrangement of the magnetic and electric fields at the lower plate. Exact analytical solutions are derived for fluid velocity and the results are presented in figures. All these flows are new and are presented for the first time in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Albrecht T., Grundmann R., Mutschke G., Gerbeth G.: On the stability of the boundary layer subject to a wall-parallel Lorentz force. Phys. Fluids 18, 098103 (2006)

    Article  Google Scholar 

  • Aurnou J.M., Olson P.L.: Experiments on Rayleigh-Benard convection, magnetoconvection and rotating magnetoconvection in liquid gallium. J. Fluid Mech. 430, 283–307 (2001)

    Article  Google Scholar 

  • Berger T.W., Kim J., Lee C., Lim J.: Turbulent boundary layer control utilizing the Lorentz force. Phys. Fluids 12, 631–649 (2000)

    Article  Google Scholar 

  • Breuer K.S., Park J., Henoch C.: Actuation and control of a turbulent channel flow using Lorentz forces. Phys. Fluids 16, 897–907 (2004)

    Article  Google Scholar 

  • Burr U., Barleon L., Jochmann P., Tsinober A.: Magnetohydrodynamic convection in a vertical slot with horizontal magnetic field. J. Fluid Mech. 475, 21–40 (2003)

    Article  Google Scholar 

  • Crawford C.H., Karniadakis G.E.: Reynolds stress analysis of EMHD-controlled wall turbulence. 1. Streamwise forcing. Phys. Fluids 9, 788–806 (1997)

    Article  Google Scholar 

  • Du Y.Q., Karniadakis G.E.: Suppressing wall turbulence by means of a transverse traveling wave. Science 288, 1230–1234 (2000)

    Article  Google Scholar 

  • Du Y.Q., Symeonidis V., Karniadakis G.E.: Drag reduction in wall-bounded turbulence via a transverse traveling wave. J. Fluid Mech. 457, 1–34 (2002)

    Article  Google Scholar 

  • Gailitis A., Lielausis O.: On a possibility to reduce the hydrodynamic resistance of a plate in a electrolyte. Appl. Magnetohydrodyn. 12, 143–146 (1961)

    Google Scholar 

  • Haji-Sheikh A.: Estimation of average and local heat transfer in parallel plates and circular ducts filled with porous material. ASME J. Heat Transf. 126, 400–409 (2004)

    Article  Google Scholar 

  • Henoch C., Stace J.: Experimental investigation of a salt-water turbulent boundary-layer modified by an applied streamwise magnetohydrodynamic body force. Phys. Fluids 7, 1371–1383 (1995)

    Article  Google Scholar 

  • Hooman K.: A perturbation solution for forced convection in a porous-saturated duct. J. Comput. Appl. Math. 211, 57–66 (2008)

    Article  Google Scholar 

  • Kaviany M.: Laminar flow through a porous channel bounded by isothermal parallel plates. Int. J. Heat Mass Transf. 28, 851–858 (1985)

    Article  Google Scholar 

  • Kim S.J., Lee C.M.: Investigation of the flow around a circular cylinder under the influence of an electromagnetic force. Exp. Fluids 28, 252–260 (2000)

    Article  Google Scholar 

  • Kuznetsov A.V.: Analytical investigation of heat transfer in Couette flow through a porous medium utilizing the Brinkman-Forchheimer-extended Darcy model. Acta Mech. 129, 13–24 (1998)

    Article  Google Scholar 

  • Lee J.H., Sung H.J.: Response of a spatially developing turbulent boundary layer to a spanwise oscillating electromagnetic force. J. Turbul. 6, 1–15 (2005)

    Article  Google Scholar 

  • Mutschke G., Gerbeth G., Albrecht T., Grundmann R.: Separation control at hydrofoils using Lorentz forces. Eur. J. Mech. B Fluids 25, 137–152 (2006)

    Article  Google Scholar 

  • Nakayama A., Koyama H., Kuwahara F.: An analysis on forced convection in a channel filled with a Brinkman-Darcy porous medium:exact and approximate solutions. Warme Stoffubertrag. 23, 291–295 (1988)

    Article  Google Scholar 

  • Nield D.A., Bejan A.: Convection in porous media, 3rd edn. Springer, New York (2006)

    Google Scholar 

  • Nield D.A., Junqueira S.L.M., Lage J.L.: Forced convection in a fluid-saturated porous-medium channel with isothermal or isoflux boundaries. J. Fluid Mech. 322, 201–214 (1996)

    Article  Google Scholar 

  • Nield D.A., Kuznetsov A.V., Xiong M.: Effects of viscous dissipation and flow work on forced convection in a channel filled by a saturated porous medium. Transport Porous Media 56, 351–367 (2004)

    Article  Google Scholar 

  • O’Sullivan P.L., Biringen S.: Direct numerical simulation of low Reynolds number turbulent channel flow with EMHD control. Phys. Fluids 10, 1169–1181 (1998)

    Article  Google Scholar 

  • Pantokratoras, A.: Some new parallel flows in weakly conducting fluids with an exponentially decaying Lorentz force. Math. Probl. Eng. 2007, Article ID 87814 (2007)

  • Posdziech O., Grundmann R.: Electromagnetic control of seawater flow around circular cylinders. Eur. J. Mech. B Fluids 20, 255–274 (2001)

    Article  Google Scholar 

  • Poulikakos D., Renken K.: Forced convection in a channel filled with porous medium, including the effects of flow inertia, variable porosity, and Brinkman friction. ASME J. Heat Transf. 109, 880–888 (1987)

    Article  Google Scholar 

  • Renken K., Poulikakos D.: Experiment and analysis of forced convective heat transport in a packed bed of spheres. Int. J. Heat Mass Transf. 31, 1399–1408 (1988)

    Article  Google Scholar 

  • Shatrov, V., Gerbeth, G.: Magnetohydrodynamic drag reduction and its efficiency. Phys. Fluids 19(3), art. no. 035109 (2007)

    Google Scholar 

  • Spong E., Reizes J.A., Leonardi E.: Efficiency improvements of electromagnetic flow control. Int. J. Heat Fluid Flow 26, 635–655 (2005)

    Article  Google Scholar 

  • Tsinober A.B., Shtern A.G.: Possibility of increasing the flow stability in a boundary layer by means of crossed electric and magnetic fields. Magnetohydrodynamics 3, 103–105 (1967)

    Google Scholar 

  • Vafai K., Kim S.J.: Forced convection in a channel filled with a porous medium: an exact solution. ASME J. Heat Transf. 111, 1103–1106 (1989)

    Article  Google Scholar 

  • Weier T., Gerbeth G., Mutschke G., Plantacis E., Lielausis O.: Experiments on cylinder wake stabilization of an electrolyte solution by means of electromagnetic forces localized on the cylinder surface. Exp. Thermal Fluid Sci. 16, 84–91 (1998)

    Article  Google Scholar 

  • Weier T., Gerbeth G., Mutschke G., Lielausis O., Lammers G.: Control of flow separation using electromagnetic forces. Flow Turbul. Combust. 71, 5–17 (2003)

    Article  Google Scholar 

  • Weier T., Gerbeth G.: Control of separated flows by time periodic Lorentz forces. Eur. J. Mech. B Fluids 23, 835–849 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asterios Pantokratoras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pantokratoras, A., Fang, T. Flow of a Weakly Conducting Fluid in a Channel Filled with a Porous Medium. Transp Porous Med 83, 667–676 (2010). https://doi.org/10.1007/s11242-009-9470-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-009-9470-6

Keywords

Navigation