Skip to main content
Log in

Non-linear Convective Transport in a Binary Nanofluid Saturated Porous Layer

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

In this article, we study double-diffusive convection in a horizontal porous medium saturated by a nanofluid, for the case when the base fluid of the nanofluid is itself a binary fluid such as salty water. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis, while the Darcy model is used for the porous medium. The thermal energy equations include the diffusion and cross-diffusion terms. The linear stability is studied using normal mode technique and for non-linear analysis, a minimal representation of the truncated Fourier series analysis involving only two terms has been used. For linear theory analysis, critical Rayleigh number has been obtained, while non-linear analysis has been done in terms of the Nusselt numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C :

Solute concentration

D B :

Brownian diffusion coefficient

D T :

Thermophoretic diffusion coefficient

d :

Dimensional layer depth

k T :

Effective thermal conductivity of porous medium

k m :

Thermal diffusivity of porous medium

K :

Permeability

Le :

Thermo-solutal Lewis number

Ln :

Thermo-nanofluid Lewis number

N A :

Modified diffusivity ratio

N B :

Modified particle-density increment

N CT :

Soret parameter

N TC :

Dufour parameter

p :

Pressure

g :

Gravitational acceleration

Ra :

Thermal Rayleigh-Darcy number

Rm :

Basic density Rayleigh number

Rn :

Nanoparticle concentration Rayleigh number

Rs :

Solutal Rayleigh number

t :

Time

T :

Nanofluid temperature

T c :

Temperature at the upper wall

T h :

Temperature at the lower wall

v :

Nanofluid velocity

(x, y, z):

Cartesian coordinates

β C :

Solutal volumetric coefficient

β T :

Thermal volumetric coefficient

ε :

Porosity

μ :

Viscosity of the fluid

ρ f :

Fluid density

ρ p :

Nanoparticle mass density

γ :

Thermal capacity ratio

\({\phi }\) :

Nanoparticle volume fraction

ψ :

Stream function

α :

Wave number

ω :

Frequency of oscillations

b:

Basic solution

f:

Fluid

p:

Particle

*:

Dimensional variable

′:

Perturbation variable

\({\nabla^2}\) :

\({\displaystyle\frac{\partial^2}{\partial x^2} + \displaystyle\frac{\partial^2}{\partial y^2} + \displaystyle\frac{\partial^2}{\partial z^2}}\) .

\({\nabla_1^2}\) :

\({\displaystyle\frac{\partial^2}{\partial x^2} + \displaystyle\frac{\partial^2}{\partial z^2}}\) .

References

  • Agarwal S., Bhadauria B.S.: Natural convection in a nanofluid saturated rotating porous layer with thermal non equilibrium model. Transp. Porous Media 2(1), 53–64 (2011)

    Google Scholar 

  • Agarwal S., Bhadauria B.S., Siddheshwar P.G.: Thermal instability of a nanofluid saturating a rotating anisotropic porous medium. Spec. Top. Rev. Porous Media Begell House Publ. 2(1), 53–64 (2011)

    Google Scholar 

  • Bhadauria B.S.: Double diffusive convection in a porous medium with modulated temperature on the boundaries. Transp. Porous Media 70, 191–211 (2007a)

    Article  Google Scholar 

  • Bhadauria B.S.: Fluid convection in a rotating porous layer under modulated temperature on the boundaries. Transp. Porous Media 67(2), 297–315 (2007b)

    Article  Google Scholar 

  • Bhadauria B.S.: Effect of temperature modulation on Darcy convection in a rotating porous medium. J. Porous Media 11(4), 361–375 (2008)

    Article  Google Scholar 

  • Bhadauria B.S., Agarwal S.: Natural convection in a nanofluid saturated rotating porous layer: a nonlinear study. Transp. Porous Media 87(2), 585–602 (2011a)

    Article  Google Scholar 

  • Bhadauria B.S., Agarwal S.: Convective transport in a nanofluid saturated porous layer with thermal non equilibrium model. Transp. Porous Media 88(1), 107–131 (2011b)

    Article  Google Scholar 

  • Bhadauria B.S., Agarwal S., Kumar A.: Non-linear two-dimensional convection in a nanofluid saturated porous medium. Transp. Porous Media 90(2), 605–625 (2011)

    Article  Google Scholar 

  • Buongiorno J.: Convective transport in nanofluids. ASME J Heat Transfer 128, 240–250 (2006)

    Article  Google Scholar 

  • Buongiorno, J., Hu, W.: Nanofluid coolant for advanced nuclear power plants. Paper No. 5705. In: Proceedings of ICAPP’05, Seoul, 15–19 May 2005

  • Chandrashekhar S.: Hydrodynamic and hydromagnetic stability. Oxford University Press, Oxford (1961)

    Google Scholar 

  • Choi, S.: Enhancing thermal conductivity of fluids with nanoparticles. In: Signier, D.A., Wang, H.P. (eds.) Development and applications of Non-Newtonian flows, ASME FED, vol. 231/MD vol. 66, pp. 99–105 (1995)

  • Choi S.: Nanofluid Technology: Current Status and Future Research. Energy Technology Division, Argonne National Laboratory, Argonne (1999)

    Google Scholar 

  • Das S.K., Putra N., Thiesen P., Roetzel W.: Temperature dependence of thermal conductivity enhancement for nanofluids. ASME J. Heat Transf. 125, 567–574 (2003)

    Article  Google Scholar 

  • Drazin P.G., Reid D.H.: Hydrodynamic stability. Cambridge University Press, Cambridge (1981)

    Google Scholar 

  • Eastman J.A., Choi S.U.S., Yu W., Thompson L.J.: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78, 718–720 (2001)

    Article  Google Scholar 

  • Eastman J.A., Choi S.U.S., Yu W., Thompson L.J.: Thermal transport in nanofluids. Annu. Rev. Matter Res. 34, 219–246 (2004)

    Article  Google Scholar 

  • Horton W., Rogers F.T.: Convection currents in a porous medium. J. Appl. Phys. 16, 367–370 (1945)

    Article  Google Scholar 

  • Keblinski P., Cahil D.G.: Comments on model for heat conduction in nanofluids. Phy. Rev. Lett. 95, 209401 (2005)

    Article  Google Scholar 

  • Kim J., Kang Y.T., Choi C.K.: Analysis of convective instability and heat transfer characteristics of nanofluids. Phys. Fluids 16, 2395–2401 (2004)

    Article  Google Scholar 

  • Kim J., Choi C.K., Kang Y.T., Kim M.G.: Effects of thermodiffusion and nanoparticles on convective instabilities in binary nanofluids. Nanoscale Microscale Thermophys. Eng. 10, 29–39 (2006)

    Article  Google Scholar 

  • Kim J., Kang Y.T., Choi C.K.: Analysis of convective instability and heat transfer characteristics of nanofluids. Int. J. Refrig. 30, 323–328 (2007)

    Article  Google Scholar 

  • Kleinstreuer C., Li J., Koo J.: Microfluidics of nano-drug delivery. Int. J. Heat Mass Transf. 51, 5590–5597 (2008)

    Article  Google Scholar 

  • Kuznetsov A.V.: Thermal nonequilibrium forced convection in porous Media. In: Ingham, D.B., Pop, I. (eds) Transport Phenomenon in Porous Media, pp. 103–130. Pergamon, Oxford (1998)

    Chapter  Google Scholar 

  • Kuznetsov A.V., Nield D.A.: Thermal instability in a porous medium layer saturated by a nanofluid: Brinkman model. Transp. Porous Media 81, 409–422 (2010a)

    Article  Google Scholar 

  • Kuznetsov A.V., Nield D.A.: Effect of local thermal non-equilibrium on the onset of convection in porous medium layer saturated by a nanofluid. Transp. Porous Media 83, 425–436 (2010b)

    Article  Google Scholar 

  • Kuznetsov A.V., Nield D.A.: Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int. J. Therm. Sci. 49, 243–247 (2010c)

    Article  Google Scholar 

  • Kuznetsov A.V., Nield D.A.: The onset of double-diffusive nanofluid convection in a layer of a saturated porous medium. Transp. Porous Media 85, 941–951 (2010d)

    Article  Google Scholar 

  • Kuznetsov A.V., Nield D.A.: Double-diffusive natural convective boundary-layer flow of a nanofluid past a vertical plate. Int. J. Therm. Sci. 50, 712–717 (2011)

    Article  Google Scholar 

  • Lapwood E.R.: Convection of a fluid in a porous medium. Proc. Camb. Phil. Soc. 44, 508–521 (1948)

    Article  Google Scholar 

  • Malashetty M.S.: Anisotropic thermo convective effects on the onset of double diffusive convection in a porous medium. Int. J. Heat Mass Transf. 36, 2397–2401 (1993)

    Article  Google Scholar 

  • Masuda H., Ebata A., Teramae K., Hishinuma N.: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra fine particles. Netsu Bussei 7, 227–233 (1993)

    Article  Google Scholar 

  • Murray B.T., Chen C.F.: Double diffusive convection in a porous medium. J. Fluid Mech. 201, 147–166 (1989)

    Article  Google Scholar 

  • Nield D.A.: Onset of thermohaline convection in a porous medium. Water Resour. Res. 4, 553–560 (1968)

    Article  Google Scholar 

  • Nield D.A., Bejan A.: Convection in Porous Media. 3rd edn. Springer, New York (2006)

    Google Scholar 

  • Nield D.A., Kuznetsov A.V.: Thermal instability in a porous medium layer saturated by nonofluid. Int. J. Heat Mass Transf. 52, 5796–5801 (2009a)

    Article  Google Scholar 

  • Nield D.A., Kuznetsov A.V.: The Cheng-Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid. Int. J. Heat Mass Transf. 52, 5792–5795 (2009b)

    Article  Google Scholar 

  • Nield D.A., Kuznetsov A.V.: The effect of local thermal nonequilibrium on the onset of convection in a nanofluid. J. Heat Transf. 132, 052405 (2010a)

    Article  Google Scholar 

  • Nield D.A., Kuznetsov A.V.: The onset of convection in a horizontal nanofluid layer of finite depth. Eur. J. Mech. B 29, 217–223 (2010b)

    Article  Google Scholar 

  • Rudraiah N., Malashetty M.S.: The influence of coupled molecular diffusion on the double diffusive convection in a porous medium. ASME J. Heat Transf. 108, 872–876 (1986)

    Article  Google Scholar 

  • Tzou D.Y.: Instability of nanofluids in natural convection. ASME J. Heat Transf. 130, 072401 (2008a)

    Article  Google Scholar 

  • Tzou D.Y.: Thermal instability of nanofluids in natural convection. Int. J. Heat Mass Transf. 51, 2967–2979 (2008b)

    Article  Google Scholar 

  • Vadasz, P.: Nanofluids suspensions: possible explanations for the apparent enhanced effective thermal conductivity, ASME paper #HT2005-72258. In: Proceedings of 2005 ASME Summer Heat Transfer Conference, San Francisco, 17–22 July 2005

  • Vadasz P.: Heat conduction in nanofluid suspensions. ASME J. Heat Transf. 128, 465–477 (2006)

    Article  Google Scholar 

  • Vafai K.: Handbook of Porous Media. Taylor and Francis, London (2005)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Bhadauria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agarwal, S., Sacheti, N.C., Chandran, P. et al. Non-linear Convective Transport in a Binary Nanofluid Saturated Porous Layer. Transp Porous Med 93, 29–49 (2012). https://doi.org/10.1007/s11242-012-9942-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-012-9942-y

Keywords

Navigation