Skip to main content
Log in

Ferrofluid Permeation into Three-Dimensional Random Porous Media: A Numerical Study Using the Lattice Boltzmann Method

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Colloidal suspensions containing magnetic nanoparticles placed in appropriate carrier liquids present strong magnetic dipoles. These suspensions, in general, exhibit normal liquid behaviour coupled with super paramagnetic properties. This leads to the possibility of remotely controlling the flow of such liquids with a moderate-strength external magnetic field. In this study, we numerically investigate the viability of controlling and steering a base-fluid with magnetic-sensitive nanoparticles into randomly structured fibrous porous media. Three dimensional flow simulations are performed using the lattice Boltzmann method. The simulation results for the flow front are presented, and the effect of the magnetic field strength on the rate of ferrofluid penetration is discussed. It is shown that the porosity of the porous medium and the size of the fibres have a strong effect on the ferrofluid penetration rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aursjø, O., Løvoll, G., Knudsen, H.A., Flekkøy, E.G., Måløy, K.J.: A direct comparison between a slow pore scale drainage experiment and a 2D lattice Boltzmann simulation. Transp. Porous Media 86, 125–134 (2011)

    Article  Google Scholar 

  • Berkovsky, B.M., Medvedev, V.F., Krakov, M.S.: Magnetic fluids: engineering applications. Oxford University Press, Oxford (1993)

    Google Scholar 

  • Borglin, S.E., Moridis, G.J., Oldenburg, C.M.: Experimental Studies of Magnetically-Driven Flow of Ferrofluids in Porous Media. Report LBNL-40126. Lawrence Berkeley National Laboratory, Berkeley (1998)

    Book  Google Scholar 

  • Borglin, S.E., Moridis, G.J., Oldenburg, C.M.: Experimental studies of the flow of ferrofluid in porous media. Transp. Porous Media 41(1), 61–80 (2000)

    Article  Google Scholar 

  • Hiergeist, R., Andrä, W., Buske, N.: Application of magnetite ferrofluids for hyperthermia. J. Magn. Magn. Mater. 201(1–3), 420–422 (1999)

    Article  Google Scholar 

  • Horbach, J., Succi, S.: Lattice Boltzmann versus molecular dynamics simulation of nanoscale hydrodynamic flows. Phys. Rev. Lett. 96(22), 224503 (2006)

    Article  Google Scholar 

  • Huang, H., Thorne, D.T., Schaap, M.G., Sukop, M.C.: Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models. Phys. Rev. E 76, 066701 (2007)

    Article  Google Scholar 

  • Hyvaluoma, J., Koponen, A., Raiskinmaki, P., Timonen, J.: Droplets on inclined rough surfaces. Eur. Phys. J. E 23, 289–293 (2007)

    Article  Google Scholar 

  • Inamuro, T., Tomita, R., Ogino, F.: Lattice Boltzmann simulations of drop deformation and breakup in shear flows. Int. J. Mod. Phys. B 17, 21–26 (2003)

    Article  Google Scholar 

  • Janßen, C., Krafczyk, M.: Free Surface flow simulations on GPGPUs using the LBM. Comput. Math. Appl. 61(12), 3549–3563 (2011)

    Article  Google Scholar 

  • Jiang, F., Sousa, A.C.M.: Smoothed particle hydrodynamics modeling of transverse flow in randomly aligned fibrous porous media. Transp. Porous Media 75, 17–33 (2008)

    Article  Google Scholar 

  • Jiang, F., Oliveira, M.S.A., Sousa, A.C.M.: SPH simulation of transition to turbulence for planar shear flow subjected to a streamwise magnetic field. J. Comput. Phys. 217(2), 485–501 (2006)

    Article  Google Scholar 

  • Jiang, F., Oliveira, M.S.A., Sousa, A.C.M.: Mesoscale SPH modeling of fluid flow in isotropic porous media. Comput. Phys. Commun. 176(7), 471–480 (2007)

    Article  Google Scholar 

  • Kang, Q.J., Zhang, D.X., Chen, S.Y.: Displacement of a two-dimensional immiscible droplet in a channel. Phys. Fluids 14, 3203–3214 (2002)

    Article  Google Scholar 

  • Lallemand, P., Luo, L.-S., Peng, Y.: A lattice Boltzmann front-tracking method for interface dynamics with surface tension in two dimensions. J. Comput. Phys. 226(2), 1367–1384 (2007)

    Article  Google Scholar 

  • Liu, H., Zhang, Y.: Droplet formation in a T-shaped microfluidic junction. J. Appl. Phys. 106, 034906 (2009)

    Article  Google Scholar 

  • McCaig, M., Clegg, A.G.: Permanent Magnets in Theory and Practice, 2nd edn. Wiley, New York (1987)

    Google Scholar 

  • Nabovati, A.: Pore level simulation of single and two phase flow in porous media using lattice Boltzmann method. Ph.D. Dissertation. University of New Brunswick, Fredericton (2009)

    Google Scholar 

  • Nabovati, A., Sousa, A.C.M.: Fluid flow simulation at open-porous medium interface using the lattice Boltzmann method. Int. J. Numerical Method Fluids 56(8), 1449–1456 (2008)

    Article  Google Scholar 

  • Nabovati, A., Llewellin, E.W., Sousa, A.C.M.: A general model for the permeability of fibrous porous media based on fluid flow simulations using the lattice Boltzmann method. Composites: Part A 40, 860–869 (2009)

    Article  Google Scholar 

  • Nabovati, A., Llewellin, E.W., Sousa, A.C.M.: Through-thickness permeability prediction of three-dimensional multifilament woven fabrics. Composites: Part A 41, 453–463 (2010)

    Article  Google Scholar 

  • Odenbach, S.: Recent progress in magnetic fluid research. J. Phys. Condens. Matter. 16(32), R1135–R1150 (2004)

    Article  Google Scholar 

  • Oldenburg, C.M., Borglin, S.E., Moridis, G.J.: Numerical simulation of ferrofluid flow for subsurface environmental engineering applications. Transp. Porous Media 38(3), 319–344 (2000)

    Article  Google Scholar 

  • Pan, C., Hilpert, M., Miller, C.T.: Lattice-Boltzmann simulation of two-phase flow in porous media. Wat. Resour. Res. 40, W01501 (2004)

    Google Scholar 

  • Raj, K., Moskowitz, R.: Commercial applications of ferrofluids. J. Magn. Magn. Mater. 85(1–3), 233–245 (1990)

    Article  Google Scholar 

  • Rosensweig, R.E.: Ferrohydrodynamics. Dover Publications Inc., New York (1997)

    Google Scholar 

  • Sangani, A.S., Acrivos, A.: Slow flow through a periodic array of spheres. Int. J. Multiph. Flow 8(14), 343–360 (1982)

    Article  Google Scholar 

  • Schaap, M.G., Porter, M.L., Christensen, B.S.B., Wildenschild, D.: Comparison of pressure–saturation characteristics derived from computed tomography and lattice Boltzmann simulations. Wat. Resour. Res. 43, W12S06 (2007)

  • Shan, X., Chen, H.: Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47(3), 1815–1819 (1993)

    Article  Google Scholar 

  • Shan, X., Chen, H.: Simulation of nonideal gases and liquid–gas phase-transitions by the lattice Boltzmann-equation. Phys. Rev. E 49, 2941–2948 (1994)

    Article  Google Scholar 

  • Sousa, A.C.M., Jiang, F.: SPH as an inverse numerical tool for the prediction of diffusive properties in porous medium. Mater. Sci. Forum 553, 171–189 (2007)

    Article  Google Scholar 

  • Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press, Oxford (2001)

    Google Scholar 

  • Sui, Y., Low, H.T., Chew, Y.T., Roy, P.: A front-tracking lattice Boltzmann method to study flow-induced deformation of three-dimensional capsules. Comput. Fluids 39, 499–511 (2010)

    Article  Google Scholar 

  • Sukop, M.C., Thorne Jr, D.T.: Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers. Springer, Berlin (2006)

    Google Scholar 

  • Wang, X.-Q., Mujumdar, A.S.: Heat transfer characteristics of nanofluids: a review. Int. J. Therm. Sci. 46(1), 1–19 (2007)

    Article  Google Scholar 

  • Wolf, F.G., dos Santos, L.O.E., Philippi, P.C.: Modeling and simulation of the fluid–solid interaction in wetting. J. Stat. Mech. P06008 (2009)

  • Xuan, Y., Ye, M., Li, Q.: Mesoscale simulation of ferrofluid structure. Int. J. Heat Mass Transf. 48(12), 2443–2451 (2005)

    Article  Google Scholar 

  • Yu, D., Mei, R., Luo, L.-S.: Viscous flow computations with the method of lattice Boltzmann equation. Progr. Aerosp. Sci. 39(5), 329–367 (2003)

    Article  Google Scholar 

  • Zhang, J., Kwok, D.Y.: Contact line and contact angle dynamics in superhydrophobic channels. Langmuir 22, 4998–5004 (2006)

    Article  Google Scholar 

  • Zhang, J., Kwok, D.Y.: A mean-field free energy lattice Boltzmann model for multicomponent fluids. Eur. Phys. J. Special Top. 171, 45–53 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support received from NSERC (Natural Sciences and Engineering Research Council of Canada) Discovery Grant 12875 (ACMS) and FCT (Foundation for Science and Technology—Portugal) Grant PTDC/EME-MFE/105031/2008 (ACMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahshid Hadavand.

Appendix

Appendix

The local coordinate system for a magnetic field produced by a permanent magnet is shown in Fig. 12. Note that in this figure the \(z\) axis in local magnet coordinate system and that for the flow simulations are in different directions.

Fig. 12
figure 12

Local coordinate system for the magnetic field produced by a permanent magnet (Oldenburg et al. 2000)

McCaig and Clegg (1987) presented the three-dimensional relations for the magnetic field strength inside a rectangular channel, as follows:

$$\begin{aligned} {\textit{Hx}}&= \frac{{B}_{{r}}}{4\pi \mu _0}\text{ ln }\left\{ {\frac{({y}+{b})+\left[ {\left( {{y}+{b}} \right) ^{2}+({x}-{a})^{2}+{z}^{2}} \right] ^{\frac{1}{2}}}{({y}-{b})+\left[ {\left( {{y}-{b}} \right) ^{2}+({x}-{a})^{2}+{z}^{2}} \right] ^{\frac{1}{2}}}\times \frac{({y}-{b})+\left[ {\left( {{y}-{b}} \right) ^{2}+({x}+{a})^{2}+{z}^{2}} \right] ^{\frac{1}{2}}}{({y}+{b})+\left[ {\left( {{y}+{b}} \right) ^{2}+({x}+{a})^{2}+{z}^{2}} \right] ^{\frac{1}{2}}}} \right\} \nonumber \\&\qquad \qquad \qquad -\frac{{B}_{{r}}}{4\pi \mu _0}\text{ ln }\left\{ \frac{({y}+{b})+\left[ {\left( {{y}+{b}} \right) ^{2}+\left( {{x}-{a}} \right) ^{2}+\left( {{z}+{L}} \right) ^{2}} \right] ^{\frac{1}{2}}}{\left( {{y}-{b}} \right) +\left[ {\left( {{y}-{b}} \right) ^{2}+\left( {{x}-{a}} \right) ^{2}+\left( {{z}+{L}} \right) ^{2}} \right] ^{\frac{1}{2}}}\right. \nonumber \\&\qquad \qquad \qquad \left. \times \frac{({y}-{b})+\left[ {\left( {{y}-{b}} \right) ^{2}+\left( {{x}+{a}} \right) ^{2}+({z}+{L})^{2}} \right] ^{1/2}}{\left( {{y}+{b}} \right) +\left[ {\left( {{y}+{b}} \right) ^{2}+\left( {{x}+{a}} \right) ^{2}+({z}+{L})^{2}} \right] ^{\frac{1}{2}}} \right\} \end{aligned}$$
(17)
$$\begin{aligned} {\textit{Hy}}&= \frac{B_r}{4\pi \mu _0 }\text{ ln }\left\{ {\frac{(x+a)+\left[ {\left( {y-b} \right) ^{2}+(x+a)^{2}+z^{2}} \right] ^{\frac{1}{2}}}{(x-a)+\left[ {\left( {y-b} \right) ^{2}+(x-a)^{2}+z^{2}} \right] ^{\frac{1}{2}}}\times \frac{(x-a)+\left[ {\left( {y+b} \right) ^{2}+(x-a)^{2}+z^{2}} \right] ^{\frac{1}{2}}}{(x+a)+\left[ {\left( {y+b} \right) ^{2}+(x+a)^{2}+z^{2}} \right] ^{\frac{1}{2}}}} \right\} \nonumber \\&\qquad \qquad \qquad -\frac{B_r }{4\pi \mu _0} \text{ ln }\left\{ \frac{(x+a)+\left[ {\left( {y-b} \right) ^{2}+\left( {x+a} \right) ^{2}+\left( {z+L} \right) ^{2}} \right] ^{\frac{1}{2}}}{\left( {x-a} \right) +\left[ {\left( {y-b} \right) ^{2}+\left( {x-a} \right) ^{2}+\left( {z+L} \right) ^{2}} \right] ^{\frac{1}{2}}}\right. \nonumber \\&\qquad \qquad \qquad \left. \times \frac{(x-a)+\left[ {\left( {y+b} \right) ^{2}+\left( {x-a} \right) ^{2}+(z+L)^{2}} \right] ^{1/2}}{\left( {x+a} \right) +\left[ {\left( {y+b} \right) ^{2}+\left( {x+a} \right) ^{2}+(z+L)^{2}} \right] ^{\frac{1}{2}}} \right\} \end{aligned}$$
(18)
$$\begin{aligned} {\textit{Hz}}&= \frac{B_r}{4\pi \mu _0}\left\{ \tan ^{-1}\left[ {\frac{\left( {x+a} \right) \left( {y+b} \right) }{z\left[ {\left( {y+b} \right) ^{2}+\left( {x+a} \right) ^{2}+z^{2}} \right] ^{\frac{1}{2}}}} \right] +\tan ^{-1}\left[ {\frac{\left( {x-a} \right) \left( {y-b} \right) }{z\left[ {\left( {y-b} \right) ^{2}+\left( {x-a} \right) ^{2}+z^{2}} \right] ^{\frac{1}{2}}}} \right] \right. \nonumber \\&\qquad \qquad \qquad -\left. \tan ^{-1}\left[ {\frac{\left( {x+a} \right) \left( {y-b} \right) }{z\left[ {\left( {y-b} \right) ^{2}+\left( {x+a} \right) ^{2}+z^{2}} \right] ^{\frac{1}{2}}}} \right] -\tan ^{-1}\left[ {\frac{\left( {x-a} \right) \left( {y+b} \right) }{z\left[ {\left( {y+b} \right) ^{2}+\left( {x-a} \right) ^{2}+z^{2}} \right] ^{\frac{1}{2}}}} \right] \right\} \nonumber \\&\qquad \qquad \qquad -\frac{B_r }{4\pi \mu _0}\left\{ \tan ^{-1}\left[ {\frac{(x+a)\left( {y\!+\!b} \right) }{\left( {z\!+\!L} \right) \left[ {\left( {x\!+\!a} \right) ^{2}\!+\!\left( {y\!+\!b} \right) ^{2}\!+\!\left( {z\!+\!L} \right) ^{2}} \right] ^{\frac{1}{2}}}} \right] \right. \nonumber \\&\qquad \qquad \qquad +\tan ^{-1}\left[ {\frac{(x-a)\left( {y-b} \right) }{\left( {z+L} \right) \left[ {\left( {x-a} \right) ^{2}+\left( {y-b} \right) ^{2}+\left( {z+L} \right) ^{2}} \right] ^{\frac{1}{2}}}} \right] \nonumber \\&\qquad \qquad \qquad -\tan ^{-1}\left[ {\frac{(x+a)(y-b)}{(z+L)[\left( {x+a} \right) ^{2}+\left( {y-b} \right) ^{2}+({z}+L)^{2}]^{1/2}}} \right] \nonumber \\&\qquad \qquad \qquad \left. -\tan ^{-1}\left[ {\frac{(x-a)(y+b)}{(z+L)[\left( {x-a} \right) ^{2}+\left( {y+b} \right) ^{2}+({z}+L)^{2}]^{1/2}}} \right] \right\} \end{aligned}$$
(19)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadavand, M., Nabovati, A. & Sousa, A.C.M. Ferrofluid Permeation into Three-Dimensional Random Porous Media: A Numerical Study Using the Lattice Boltzmann Method. Transp Porous Med 99, 191–206 (2013). https://doi.org/10.1007/s11242-013-0185-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-013-0185-3

Keywords

Navigation