Skip to main content
Log in

Methane Hydrate and Two-Dimensional Fluid Transport Model: Comparison with Blake Ridge Chlorinity Measurements

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The potential benefits and risks of natural methane hydrate occurrences have raised the need to understand the processes governing hydrate formation and dissociation over the last decades, and models of increasing complexity have been developed for this purpose. We propose a formulation of a multi-dimensional methane hydrate model that couples the established chemistry of hydrate formation to the fluid flow in marine sediments undergoing compaction. The numerical model applies the Finite Volume Method to construct a segregated solver for the coupled system. The solution of the sequence of individual processes is stabilised with an adaptive Picard iteration in each time step. We implement the model based on the OpenFOAM library and extend the functionality by generalising the diffusion term to take into account variable porosity of the sediment matrix. The advantage of this robust and efficient scheme is that the formulation is conservative by construction, allowing an accurate solution of mass transport when strong concentration gradients develop in the vicinity of phase boundaries. We validate the model using data from the Blake Ridge hydrate province. Good agreement is found for the pore water chlorinity, a proxy for hydrate formation, except for regions where heterogeneous hydrate formation results in highly variable measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BHSZ:

Base of the hydrate stability zone

BSR:

Bottom-Simulating Reflector

c:

Chlorine

\(c\) :

Concentration

\(c_\mathrm{c}^\mathrm{obs}\) :

Predicted chlorinity observation

\(c_\mathrm{c,rel}\) :

Chlorinity relative to seawater

\(c_\mathrm{h}\) :

Mass fraction of methane in hydrate

\(D\) :

Diffusivity constant

f:

Fluid

\(f\) :

Face between finite volume cells

FGZ:

Free gas zone

g:

Gas phase

h:

Hydrate phase

HSZ:

Hydrate stability zone

\(k_\mathrm{c}\) :

Chlorine diffusivity factor

\(\kappa \) :

Sediment permeability

m:

Methane

\(m\) :

Mass

\(\mu \) :

Fluid viscosity

\(p'\) :

Overpressure

\(\phi \) :

Porosity

\(\varPhi \) :

Volumetric production rate

\({\fancyscript{R}}\) :

Rate constant of hydrate or gas formation

\(\rho \) :

Density

s:

Sediment

\(S\) :

Saturation

\(t\) :

Time

\(\Delta t\) :

Integration time step (adaptive)

\(T\) :

Temperature

\(T_\mathrm{eq}\) :

Temperature of three-phase equilibrium

\(\mathbf{u}_D\) :

Transport velocity

\(\mathbf{v}\) :

Interstitial velocity

\(V\) :

Volume

\(V_\mathrm{V}\) :

Void space

References

  • Bryant, S.L., Thompson, K.E.: Theory, modeling and experiment in reactive transport in porous media. Curr. Opin. Colloid Interface Sci. 6(3), 217–222 (2001)

    Article  Google Scholar 

  • Bunz, S., Mienert, J., Berndt, C.: Geological controls on the Storegga gas–hydrate system of the mid-Norwegian continental margin. Earth Planet. Sci. Lett. 209(3–4), 291–307 (2003)

    Article  Google Scholar 

  • Davie, M.K., Buffett, B.A.: A numerical model for the formation of gas hydrate below the seafloor. J. Geophys. Res. Solid Earth 106(B1), 497–514 (2001)

    Article  Google Scholar 

  • Dickens, G.R.: Sulfate profiles and barium fronts in sediment on the Blake Ridge: present and past methane fluxes through a large gas hydrate reservoir. Geochim. Cosmochim. Acta 65(4), 529–543 (2001)

    Article  Google Scholar 

  • Dickens, G.R.: Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor. Earth Planet. Sci. Lett. 213(3–4), 169–183 (2003)

    Article  Google Scholar 

  • Dickens, G.R., Paull, C.K., Wallace, P.: Direct measurement of in situ methane quantities in a large gas-hydrate reservoir. Nature 385(6615), 426–428 (1997)

    Article  Google Scholar 

  • Frederick, J.M., Buffett, B.A.: Topography- and fracture-driven fluid focusing in layered ocean sediments. Geophys. Res. Lett. 38, L08614 (2011)

    Article  Google Scholar 

  • Garg, S.K., Pritchett, J.W., Katoh, A., Baba, K., Fujii, T.: A mathematical model for the formation and dissociation of methane hydrates in the marine environment. J. Geophys. Res. Solid Earth 113(B1), B01201 (2008)

    Article  Google Scholar 

  • Graf, T., Therrien, R.: Coupled thermohaline groundwater flow and single-species reactive solute transport in fractured porous media. Adv. Water Resour. 30(4), 742–771 (2007)

    Article  Google Scholar 

  • Guerin, G., Goldberg, D., Meltser, A.: Characterization of in situ elastic properties of gas hydrate-bearing sediments on the Blake Ridge. J. Geophys. Res. Solid Earth 104(B8), 17781–17795 (1999)

    Article  Google Scholar 

  • Hauschildt, J., Unnithan, V., Vogt, J.: Numerical studies of gas hydrate systems: sensitivity to porosity–permeability models. Geo-Mar. Lett. 30(3–4), 305–312 (2010)

    Article  Google Scholar 

  • Hesse, R., Harrison, W.E.: Gas hydrates (clathrates) causing pore-water freshening and oxygen isotope fractionation in deep-water sedimentary sections of terrigenous continental margins. Earth Planet. Sci. Lett. 55(3), 453–462 (1981)

    Article  Google Scholar 

  • Holbrook, W.S., Hoskins, H., Wood, W.T., Stephen, R.A., Lizarralde, D.: Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling. Science 273(5283), 1840–1843 (1996)

    Article  Google Scholar 

  • Hornbach, M.J., Saffer, D.M., Holbrook, W.S., Avendonk, H.J.A.V., Gorman, A.R.: Three-dimensional seismic imaging of the Blake Ridge methane hydrate province: evidence for large, concentrated zones of gas hydrate and morphologically driven advection. J. Geophys. Res. Solid Earth 113(B7), B07101 (2008)

    Article  Google Scholar 

  • Jasak, H.: Error analysis and estimation for the finite volume method with applications to fluid flows. PhD Thesis, Imperial College, University of London (1996)

  • Krooss, B.M., Leythaeuser, D.: Experimental measurements of the diffusion parameters of light-hydrocarbons in water-saturated sedimentary-rocks—II. Results and geochemical significance. Org. Geochem. 12(2), 91–108 (1988)

  • Kvenvolden, K.A.: Gas hydrates—geological perspective and global change. Rev. Geophys. 31(2), 173–187 (1993)

    Article  Google Scholar 

  • Liu, X., Flemings, P.B.: Dynamic multiphase flow model of hydrate formation in marine sediments. J. Geophys. Res. Solid Earth 112(B3), B03101 (2007)

    Article  Google Scholar 

  • Paull, C.K., Matsumoto, R., Wallace, P.J., et al.: Ocean drill program. In: Proceedings of the Ocean Drilling Program, Initial Reports, TX (Ocean Drilling Program), vol. 164, 1996

  • Paull, C.K., Matsumoto, R., Wallace, P.J., Dillon, W.P.: Ocean drill. program. In: Proceedings of the Ocean Drilling Program, Scientific Results, vol. 164, 2000

  • Pruess, K., Oldenburg, C.M., Moridis, G.: Tough2 users guide, version 2.0. Technical Report. Lawrence Berkeley National Laboratory, Report LBNL-43134 (1999)

  • Rempel, A.W., Buffett, B.A.: Formation and accumulation of gas hydrate in porous media. J. Geophys. Res. Solid Earth 102(B5), 10151–10164 (1997)

    Article  Google Scholar 

  • Weinberger, J.L., Brown, K.M., Long, P.E.: Painting a picture of gas hydrate distribution with thermal images. Geophys. Res. Lett. 32(4), L04609 (2005)

    Article  Google Scholar 

  • Xu, W.: Modeling dynamic marine gas hydrate systems. Am. Mineral. 89, 1271–1279 (2004)

    Google Scholar 

  • Xu, W.Y., Ruppel, C.: Predicting the occurrence, distribution, and evolution of methane gas hydrate in porous marine sediments. J. Geophys. Res. Solid Earth 104(B3), 5081–5095 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Hauschildt.

Appendix

Appendix

1.1 Program Listing of the Generalised Diffusion Term

The C++ implementation of the diffusion term (Eq. 12) for variable \(\alpha \) is a generalisation of the OpenFOAM method fvm::laplacian (Jasak 1996):

figure b

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hauschildt, J., Vogt, J. & Unnithan, V. Methane Hydrate and Two-Dimensional Fluid Transport Model: Comparison with Blake Ridge Chlorinity Measurements. Transp Porous Med 100, 425–440 (2013). https://doi.org/10.1007/s11242-013-0225-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-013-0225-z

Keywords

Navigation