Skip to main content
Log in

Note on Coussy’s Thermodynamical Definition of Fluid Pressure for Deformable Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

In a lifetime of work, Dr. Olivier Coussy developed a complete theoretic framework for porous media that researchers in a broad range of fields including (but not limited to) concrete, hydrology, swelling clay, and \(\hbox {CO}_2\)-induced swelling of coal have continued to use as a foundation. However, in some of these works where a framework is developed for a deformable porous media, a dissipative inequality is assumed that implicitly results in a thermodynamical form of liquid pressure that is inconsistent with the classical thermodynamical form of pressure found in thermodynamic textbooks for a single phase. In this note, we compare this definition of pressure with those developed in other mixture-theoretic frameworks and demonstrate this inconsistency by mathematically showing that the thermodynamic quantity is most closely related to the solid pressure and explain how this inconsistency came about.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Achanta, S., Cushman, J.H.: Non-equilibrium swelling and capillary pressure relations for colloidal systems. J. Colloid Interface Sci. 168, 266–268 (1994)

    Article  Google Scholar 

  • Achanta, S., Cushman, J.H., Okos, M.R.: On multicomponent, multiphase thermomechanics with interfaces. Int. J. Eng. Sci. 32(11), 1717–1738 (1994)

    Article  Google Scholar 

  • Achanta, S., Okos, M.R., Cushman, J.H., Kessler, D.: Moisture transport in shrinking gels during saturated drying. AIChE 43(8), 2112–2122 (1997)

    Article  Google Scholar 

  • Bennethum, L.S.: Compressibility moduli for porous materials incorporating volume fraction. J. Eng. Mech. 132(11), 1205–1214 (2006)

    Article  Google Scholar 

  • Bennethum, L.S., Cushman, J.H.: Multicomponent, multiphase thermodynamics of swelling porous media with electroquasistatics: I. Macroscale field equations. Transp. Porous Media 47(3), 309–336 (2002a)

    Article  Google Scholar 

  • Bennethum, L.S., Cushman, J.H.: Multicomponent, multiphase thermodynamics of swelling porous media with electroquasistatics: II. Constitutive theory. Transp. Porous Media 47(3), 337–362 (2002b)

    Article  Google Scholar 

  • Bennethum, L.S., Weinstein, T.: Three pressures in porous media. Transp. Porous Media 54(1), 1–34 (2004)

    Article  Google Scholar 

  • Berryman, J.G.: Effective stress for transport properties of inhomogeneous porous rock. J. Geophys. Res. 97(B12), 17409–17424 (1992)

    Article  Google Scholar 

  • Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

    Article  Google Scholar 

  • Bowen, R.M.: Theory of mixtures. In: Eringen, A.C. (ed.) Continuum Physics, vol. 3. Academic Press Inc, New York (1976)

    Google Scholar 

  • Bowen, R.M.: Incompressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 18, 1129–1148 (1980)

    Article  Google Scholar 

  • Bowen, R.M.: Compressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 20, 697–735 (1982)

    Article  Google Scholar 

  • Callen, H.B.: Thermodynamics and an Introduction to Thermostatistics. Wiley, New York (1985)

    Google Scholar 

  • Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1963)

    Article  Google Scholar 

  • Coussy, O.: Mechanics of Porous Continua. Wiley, New York (1995)

    Google Scholar 

  • Coussy, O.: Poromechanics. Wiley, West Sussex (2004)

    Google Scholar 

  • Coussy, O.: Deformation and stress from in-pore drying-induced crystallization of salt. J. Mech. Phys. Solids 54, 1517–1547 (2006)

    Article  Google Scholar 

  • Coussy, O.: Revisiting the constitutive equations of unsaturated porous solids using a lagrangian saturation concept. Int. J. Numer. Anal. Methods Geomech. 31, 1675–1694 (2007)

    Article  Google Scholar 

  • Coussy, O., Dangla, P., Lassabatere, T., Baroghel-Bouny, V.: The equivalent pore pressure and the swelling and shrinkage of cement-based materials. Mater. Struct. 37, 15–20 (2004)

    Article  Google Scholar 

  • Coussy, O., Dormieux, L., Detournay, E.: From mixture theory to Biot’s approach for porous media. Int. J. Solids Struct. 35(34–35), 4619–4635 (1998)

    Article  Google Scholar 

  • Cushman, J.H., Singh, P., Bennethum, L.S.: Toward rational design of drug delivery substrates: I. Mixture theory for two-scale biocompatible polymers. Multiscale Model. Simul. 2(2), 302–334 (2004a)

    Article  Google Scholar 

  • Cushman, J.H., Singh, P., Bennethum, L.S.: Toward rational design of drug delivery substrates: II. Mixture theory for three-scale biocompatible polymers and a computational example. Multiscale Model. Simul. 2(2), 335–357 (2004b)

    Article  Google Scholar 

  • Dormieux, L., Lemarchand, E., Coussy, O.: Macroscopic and micromechanical approaches to the modeling of the osmotic swelling in clays. Transp. Porous Media 50(1–2), 75–91 (2003)

    Article  Google Scholar 

  • Eringen, A. C.: Mechanics of Continua. Robert E. Krieger Publishing Company, Malabar (1989)

  • Gray, W.G., Miller, C.T.: Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 3 Single-fluid-phase flow. Adv. Water Resour. 29(11), 1745–1765 (2006)

    Article  Google Scholar 

  • Gu, W.Y., Lai, W.M., Mow, V.C.: Transport of multi-electrolytes in charged hydrated biological soft tissues. Transp. Porous Media 34, 143–157 (1999)

    Article  Google Scholar 

  • Hassanizadeh, S.M., Gray, W.G.: General conservation equations for multiphase systems: 1. Averaging procedure. Adv. Water Resour. 2, 131–144 (1979a)

    Article  Google Scholar 

  • Hassanizadeh, S.M., Gray, W.G.: General conservation equations for multiphase systems: 2. Mass, momenta, energy, and entropy equations. Adv. Water Resour. 2, 191–208 (1979b)

    Article  Google Scholar 

  • Hassanizadeh, S.M., Gray, W.G.: General conservation equations for multiphase systems: 3. Constitutive theory for porous media. Adv. Water Resour. 3, 25–40 (1980)

    Article  Google Scholar 

  • Huyghe, J.M., Janssen, J.D.: Quadriphasic mechanics of swelling incompressible porous media. Int. J. Eng. Sci. 35(8), 793–802 (1997)

    Article  Google Scholar 

  • Huyghe, J.M., Janssen, J.D.: Thermo-chemo-electro-mechanical formulation of saturated charged porous solids. Transp. in Porous Media 34, 129–141 (1999)

    Article  Google Scholar 

  • Miller, C.T., Gray, W.G.: Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 2 Foundation. Adv. Water Resour. 28(2), 181–202 (2005)

    Article  Google Scholar 

  • Moyne, C., Murad, M.A.: Macroscopic behavior of swelling porous media derived from micromechanical analysis. Transp. Porous Media 50, 127–151 (2003)

    Article  Google Scholar 

  • Moyne, C., Murad, M.A.: A two-scale model for coupled electro-chemo-mechanical phenomena and Onsager’s reciprocity relations in expansive clays: I Homogenization analysis. Transp. Porous Media 62(3), 333–380 (2006)

    Article  Google Scholar 

  • Rice, J.R., Cleary, M.P.: Some basic stress diffusion solutions for fluid saturated elastic porous media with compressible constitutents. Rev. Geophys. Space Phys. 14(2), 227–241 (1976)

    Article  Google Scholar 

  • Sciarra, G., dell’Isola, F., Coussy, O.: Second gradient poromechanics. Int. J. Solids Struct. 44, 6607–6629 (2007)

    Article  Google Scholar 

  • Singh, P.P., Maier, D.E., Cushman, J.H., Campanella, C.: Effect of viscoelastic relaxation on moisture transport in foods. Part II: sorption and drying of soybeans. J. Math. Biol. 49, 20–34 (2004a)

    Google Scholar 

  • Singh, P.P., Maier, D.E., Cushman, J.H., Haghighi, K., Corvalan, C.: Effect of viscoelastic relaxation on moisture transport in foods. Part I: solution of general transport equation. J. Math. Biol. 49, 1–19 (2004b)

  • Vandamme, M., Brochard, L., Lecampion, B., Coussy, O.: Adsorption and strain: the CO\(_2\)-induced swelling of coal. J. Mech. Phys. Solids 58(10), 1489–1505 (2010)

    Article  Google Scholar 

  • Weinstein, T., Bennethum, L.S.: On the derivation of the transport equation for swelling porous materials with finite deformation. Int. J. Eng. Sci. 44(18–19), 1408–1422 (2006)

    Article  Google Scholar 

  • Weinstein, T., Bennethum, L.S., Cushman, J.H.: Two-scale, three-phase theory for swelling drug delivery systems. Part I: Constitutive theory. J. Pharm. Sci. 97, 1878–1903 (2008a)

    Article  Google Scholar 

  • Weinstein, T., Bennethum, L.S., Cushman, J.H.: Two-scale, three-phase theory for swelling drug delivery systems. Part II: Flow and transport models. J. Pharm. Sci. 97, 1904–1915 (2008b)

  • Whitaker, S.: Diffusion and dispersion in porous media. Am. Inst. Chem. Eng. 13(3), 420–427 (1967)

    Article  Google Scholar 

  • Whitaker, S.: Advances in theory of fluid motion in porous media. Ind. Eng. Chem. 61(12), 14–28 (1969)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynn Schreyer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schreyer, L. Note on Coussy’s Thermodynamical Definition of Fluid Pressure for Deformable Porous Media. Transp Porous Med 114, 815–821 (2016). https://doi.org/10.1007/s11242-016-0745-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-016-0745-4

Keywords

Navigation