Skip to main content
Log in

Applying Dynamic and Synchronous DRIFTS/EXAFS to the Structural Reactive Behaviour of Dilute (≤1 wt%) Supported Rh/Al2O3 Catalysts using Quick and Energy Dispersive EXAFS

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Examples of the application of a synchronous DRIFTS/EXAFS/mass spectrometry (MS) methodology to the study of dilute (≤ 1wt%) Rh/Al2O3 catalysts are discussed. These are used to explore the potential of this approach for understanding of the behaviour of supported metal catalysts “in a single shot”, and in the often preferred regime of low (<1 wt%) loadings of active precious metals. Firstly, the sequential interaction of NO (323 K) and then CO (373 K) with reduced, 0.5 wt% Rh/Al2O3 catalysts is studied. Infrared spectroscopy indicates that two surface species (a bent Rh(NO) and Rh(CO)2 species) can be created using this sequential gas absorption/reaction method with minimal interference from other carbonyl or nitrosyl species. As such the potential for a reliable structural characterisation of the local structure of these species by EXAFS becomes possible. However, in contrast to the infrared spectroscopy, analysis of the EXAFS data also indicates that, even for such low loaded Rh systems, oxidative disruption of the Rh by the NO and CO is not complete and that bonding typical of small Rh clusters persists in both cases. The possible sources of this apparent spectroscopic difference of opinion are discussed. Secondly, 1wt% Rh/Al2O3 catalysts are studied using dispersive EXAFS at 573 K with 100 ms time resolution, during a redox switching event involving a reducing feedstock comprising just 3000 ppm of CO and 3000 ppm of NO. It is shown that highly useful and insightful time resolved and synchronously obtained XANES/EXAFS/IR data can be obtained even in this dilute Rh and more “realistic” case. Additional data, regarding the overall performance of the experiment, as currently implemented at the ESRF, along with a discussion of where enhanced performance might be yet still be gained, are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Manufacturers specification for unmodified DRIFTS Cell. To date this system has been regularly and successfully used at 673 K [11, 12] and occasionally at higher temperatures (to 773 K). At the time or writing, however, extended and reliable use at temperatures significantly greater than 673 K has yet to be demonstrated for the system after modification for the combined X-ray/DRIFTS experiment.

  2. Since the compilation and submission of this paper a fast (<<1 secs/scan) Quick scanning EXAFS resource of the sort identified as being sorely needed has indeed become available (at the Swiss Light Source) to a wider user community. The author is given to understand (and sincerely hopes) that other resources of this nature are planned elsewhere, and will pass into the realm of accessible user facilities in the relatively near future. Further information regarding this new type of QUEXAFS resource can be found in [58, 59] or (http://sls.web.psi.ch/view.php/beamlines/superxas/).

References

  1. Weckhuysen BM (2003) Phys Chem Chem Phys 5:4351–4360

    Article  CAS  Google Scholar 

  2. Boccaleri F, Carniato F, Croce G et al (2007) J Appl Cryst 40:684–693

    Article  CAS  Google Scholar 

  3. Tinnemans SJ, Mesu JG, Kervinen K, Visser T, Nijhuis TA, Beale AM, Keller DE, van der Eerden AMJ, Weckhuysen BM (2006) Catal Today 113:3–15

    Article  CAS  Google Scholar 

  4. Beale AM, van der Eerden AMJ, Kervinen K, Newton MA, Weckhuysen BM (2005) Chem Commun 301:5–3107

    Google Scholar 

  5. Briois V, Lutzenkirchen-Hecht D, Villain F, Fonda E, Belon S, Griesebock B, Frahm R, Phys J (2005) J Phys Chem A 109:320–329

    Article  CAS  Google Scholar 

  6. Newton MA, Jyoti B, Dent AJ, Fiddy SG, Evans J (2004) Chem Commun 21:2382

    Article  CAS  Google Scholar 

  7. Newton MA, Dent AJ, Fiddy SG, Jyoti B, Evans J (2007) Catal Today 126:64–72

    Article  CAS  Google Scholar 

  8. Newton MA, Dent AJ, Fiddy SG, Jyoti B, Evans J (2007) Phys Chem Chem Phys 9:246–249

    Article  CAS  Google Scholar 

  9. Dent AJ, Evans J, Fiddy SG, Jyoti B, Newton MA, Tromp M (2007) Angew Chem 46:5356–5358

    Article  CAS  Google Scholar 

  10. Newton MA, Dent AJ, Fiddy SG, Jyoti B, Evans J (2007) J Mater Sci 42:3288–3298

    Article  CAS  Google Scholar 

  11. Newton MA, Belver C, Martínez-Arias A, Fernández-García M (2007) Nat Mater 6:528–532

    Article  CAS  Google Scholar 

  12. Newton MA, Belver-Coldeira C, Martínez-Arias A, Fernández-García M (2007) Angew Chem Int Ed 46:8629–8631

    Article  CAS  Google Scholar 

  13. Newton MA, Jyoti B, Dent AJ, Diaz-Moreno S, Fiddy SG, Evans J (2006) Chem Eur J 12:1975

    Article  CAS  Google Scholar 

  14. Newton MA, Fiddy SG, Guilera G, Jyoti B, Evans J (2005) Chem Comm 1:118

    Article  CAS  Google Scholar 

  15. Newton MA, Burnaby DG, Dent AJ, Diaz-Moreno S, Evans J, Fiddy SG, Neisius T, Pascarelli S, Turin S (2001) J Phys Chem A 105:5965

    Article  CAS  Google Scholar 

  16. Newton MA, Burnaby DG, Dent AJ, Diaz-Moreno S, Evans J, Fiddy SG, Neisius T, Turin S (2002) J Phys Chem B 106:4214

    Article  CAS  Google Scholar 

  17. Labiche J-C, Mathon O, Pascarelli S, Newton MA, Guilera Ferre G, Curfs C, Vaughan G, Homs A, Fernandez Carreiras D (2007) Rev Sci Instrum 78:091301

    Article  CAS  Google Scholar 

  18. Newton MA (2007) J Synchrotron Rad 14:372–381

    Article  CAS  Google Scholar 

  19. Binsted N (1988) PAXAS: programme for the analysis of X-ray adsorption spectra. University of Southampton, UK

    Google Scholar 

  20. Binsted N (1998) EXCURV98, CCLRC Daresbury laboratory computer programme

  21. M Cavers, JM Davidson, IR Harkness, GS McDougall, LVC Rees (1999) In: Froment GF, Waugh KC (eds) Reaction kinetics and the development of catalytic processes, vol 122. Elsevier, Amsterdam, p 65

  22. CN Satterfield, (1996) In: Heterogeneous catalysis in industrial practice, Krieger Publishing, USA

  23. Arai H, Tominaga H (1976) J Catal 43:131–142

    Article  CAS  Google Scholar 

  24. Liang J, Wang HP, Spicer LD (1985) J Phys Chem 89:5840

    Article  CAS  Google Scholar 

  25. Srinivas G, Chuang SSC, Debnath S (1994) J Catal 148:748

    Article  CAS  Google Scholar 

  26. Dictor R (1988) J Catal 109:89

    Article  CAS  Google Scholar 

  27. Hyde EA, Rudham R, Rochester CH (1988) J Chem Soc Faraday Trans 80:531

    Google Scholar 

  28. Anderson JA, Millar GJ, Rochester CH (1990) J Chem Soc Faraday Trans 86:571

    Article  CAS  Google Scholar 

  29. Yang AC, Garland CW (1957) J Phys Chem 61:1044

    Article  Google Scholar 

  30. Yao C, Rothschild WG (1978) J Chem Phys 68:4774

    Article  CAS  Google Scholar 

  31. Yates JT, Duncan TM, Worley SD, Vaughan RW (1979) J Chem Phys 70:1219

    Article  CAS  Google Scholar 

  32. Antoniewicz PR, Cavanagh RR, Yates JT (1980) J Chem Phys 73:3456

    Article  CAS  Google Scholar 

  33. Basu P, Panayotov D, Yates JT (1988) J Am Chem Soc 110:2074

    Article  CAS  Google Scholar 

  34. Cavanagh RR, Yates JT (1981) J Chem Phys 74:4150

    Article  CAS  Google Scholar 

  35. Rice CA, Worley SD, Curtis CW, Guin JA, Tarrer AR (1981) J Chem Phys 74:6487

    Article  CAS  Google Scholar 

  36. Van’t Blik HFJ, Van Zon JBAD, Huizinga T, Vis JC, Koningsberger DC, Prins R (1983) J Phys Chem 87:2264

    Article  Google Scholar 

  37. Suzuki A, Inada Y, Yamaguchi A, Chihara T, Yuasa M, Nomura M, Iwasawa Y (2003) Angew Chem Int Ed 42:4795

    Article  CAS  Google Scholar 

  38. Bennett RA, McCavish ND, Basham M, Dhanak V, Newton MA (2007) Phys Rev Lett 98:056102

    Article  CAS  Google Scholar 

  39. Cavers M, Davidson JM, Harkness IR, Rees LVC, McDougall GS (1999) J Catal 188:426

    Article  CAS  Google Scholar 

  40. Kiss J, Solymosi F (1998) J Catal 179:277

    Article  CAS  Google Scholar 

  41. Krisnamurthy R, Chuang SSC, Balakos MW (1995) J Catal 157:512

    Article  Google Scholar 

  42. Krisnamurthy R, Chuang SSC, Balakos MW (1996) J Phys Chem 99:16727

    Article  Google Scholar 

  43. Solymosi F, Bansagi T (2001) J Catal 202:205

    Article  CAS  Google Scholar 

  44. Schmatloch V, Jirka I, Kruse N (1991) J Chem Phys 100:8471

    Article  Google Scholar 

  45. Sellmer C, Schmatloch V, Kruse N (1995) Catal Letts 35:165

    Article  CAS  Google Scholar 

  46. Andersson S, Frank M, Sandell A (1998) J Chem Phys 108:2967

    Article  CAS  Google Scholar 

  47. Mavrikakis M, Rempel J, Greeley J, Hansen LB, Norskov JK (2002) J Chem Phys 117:6737

    Article  CAS  Google Scholar 

  48. Mavrikakis M, Baumer M, Freund HJ, Norskov JK (2002) Catal Letts 81:153

    Article  CAS  Google Scholar 

  49. Als-Nielsen J, Grubel G, Clausen BS (1995) Nucl Instrum Methods B 97:522

    Article  CAS  Google Scholar 

  50. Grunwaldt JD, Lutzenkirchen-Hecht D, Richwin M, Grundmann S, Clausen BS, Frahm R (2001) J Phys Chem B 105:5161

    Article  CAS  Google Scholar 

  51. Duncan WD, Williams GP (1983) Appl Opt 22:2914

    Article  CAS  Google Scholar 

  52. Williams GP, Hircshmugl CJ, Kneedler EM, Sullivan EA, Siddons DP, Chabal YJ, Hoffman F, Moeller KD (1989) Rev Sci Inst 60:2176

    Article  CAS  Google Scholar 

  53. Williams GP, Dumas P (eds) (1997) Accelerator-based infrared sources and applications. Proceeding of the SPIE, 3153

  54. Jamin N, Dumas P, Moncuit J, Fridman WH, Teillaud JL, Carr GL, Williams GP (1998) PNAS 95:4837

    Article  CAS  Google Scholar 

  55. Guidi MC, Piccinini M, Marcelli A, Nucara A, Calvani P, Burattini E (2005) J Opt Soc Am A 22:2810

    Article  Google Scholar 

  56. Marcelli A, Private communication

  57. Stavitski E, Cox MHF, Swart I, De Groot FMD, Weckhuysen BM (2008) Angew Chem Intl Ed 47:1

    Article  Google Scholar 

  58. Stötzel J, Lützenkirchen-Hecht D, Fonda E, De Oliveira N, Briois V, Frahm R (2008) Rev Sci Instr 79:083107

    Article  CAS  Google Scholar 

  59. Frahm R, Stötzel J, Lützenkirchen-Hecht D (2009) Synchrotron Radiat News 22(2):6

    Article  Google Scholar 

Download references

Acknowledgments

The ESRF is thanked for access to facilities and for the funding to develop this experiment and the offline facilities wherein it is housed. Florian Perrin, Trevor Mairs, Pascal Dideron, Gemma Guilera, Olivier Mathon, Sakura Pascarelli and Anna Kroner at ID24 are thanked for their support and the various contributions they have made to the development of the experiment. Anna Kroner is especially thanked for the synthesis and EXAFS spectrum of the supported Rh(CO)2Cl/Al2O3 reference sample. Wim Bras and Sergei Nikitenko at DUBBLE are acknowledged for the provision of the beamtime and the support given during the experiment. Andy Beale and Fouad Soulimani (University of Utrecht) are also thanked for sharing of the DUBBLE beamtime used to collect the scanning EXAFS/infrared data reported here. The author is extremely grateful to Masahide Miura, Toyota Motor Corporation, Naoyuki Hara, Toyota Motor Europe, and Yasutaka Nagai, Toyota Central Research and Development Laboratories, for their longstanding commitment to research and development at ID24 and for the permission to use the Energy dispersive/DRIFTS data shown in this paper. Lastly the author would like to thank Augusto Marcelli, INFN-Laboratori Nazionali di Frascati, Italy, for discussions and information regarding new possibilities for exploitation of synchrotron based infra red light.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Newton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newton, M.A. Applying Dynamic and Synchronous DRIFTS/EXAFS to the Structural Reactive Behaviour of Dilute (≤1 wt%) Supported Rh/Al2O3 Catalysts using Quick and Energy Dispersive EXAFS. Top Catal 52, 1410–1424 (2009). https://doi.org/10.1007/s11244-009-9321-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-009-9321-2

Keywords

Navigation