Skip to main content
Log in

Ethanol Synthesis from Syngas on Transition Metal-Doped Rh(111) Surfaces: A Density Functional Kinetic Monte Carlo Study

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Advances in methodology, software and power of supercomputers make computational approaches, specifically, density functional theory (DFT), capable of providing qualitative, and in many cases quantitative, insights into catalysis. In this article we adopted a multiscale modeling paradigm in combination of DFT calculations and kinetic Monte Carlo (KMC) methods to provide better understanding of the promoting effect of doping metals (Fe, Mo, Mn) in ethanol synthesis from syngas on Rh(111). Our calculations show that metal-doping and the position of doped metals can have significant effects on the yield and selectivity of ethanol synthesis on Rh(111). Depending on the reaction conditions, Mo and Mn may stay either on the surface or in the subsurface region, while Fe prefers to stay at the surface and participate in the reaction directly. In term of the overall yield and ethanol yield, Mo–Rh(111) with Mo at the surface layer exhibits the highest activity, followed by Mn–Rh(111) with Mn at the subsurface > Fe–Rh(111) > Mo–Rh(111) with Mo at the subsurface, Mn–Rh(111) with Mn at the surface and Rh(111) in a decreasing sequence. In term of the ethanol selectivity, Fe–Rh(111) displays the highest to ethanol, followed by Mo–Rh(111) with Mo at the surface layer, Mn–Rh(111) with Mn at the subsurface > Mo–Rh(111) with Mo at the subsurface, Mn–Rh(111) with Mn at the surface and Rh(111) in a decreasing sequence. As long as Mo stays at the surface layer, Mo is the only dopant we studied here, being able to enhance both yield and selectivity of ethanol synthesis from syngas on Rh(111). Our results suggest that the design of alloy catalyst should be very careful and controlling the position of dopants is essential to the overall catalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gray KA, Zhao LS, Emptage M (2006) Curr Opin Chem Biol 10:141

    Article  CAS  Google Scholar 

  2. Rostrup-Nielsen JR (2005) Science 308:1421

    Article  CAS  Google Scholar 

  3. Spivey JJ, Egbebi A (2007) Chem Soc Rev 36:1514

    Article  CAS  Google Scholar 

  4. Subramani V, Gangwal SK (2008) Energy Fuel 22:814

    Article  CAS  Google Scholar 

  5. Forzatti P, Tronconi E, Pasquon I (1991) Catal Rev 33:109

    Article  CAS  Google Scholar 

  6. Herman RG (2000) Catal Today 55:233

    Article  CAS  Google Scholar 

  7. Huber GW, Iborra S, Corma A (2006) Chem Rev 106:4044

    Article  CAS  Google Scholar 

  8. Rostrup-Nielsen JR, Nielsen R (2004) Catal Rev 46:247

    Article  CAS  Google Scholar 

  9. Chuang SSC, Stevens RW, Khatri R (2005) Top Catal 32:225

    Article  CAS  Google Scholar 

  10. Soled SL, Iglesia E, Miseo S, Derites BA, Fiato RA (1995) Top Catal 2:193

    Article  CAS  Google Scholar 

  11. Underwood RP, Bell AT (1986) Appl Catal 21:157

    Article  CAS  Google Scholar 

  12. Underwood RP, Bell AT (1987) Appl Catal 34:289

    Article  CAS  Google Scholar 

  13. Bhasin MM, Bartley WJ, Ellgen PC, Wilson TP (1978) J Catal 54:120

    Article  CAS  Google Scholar 

  14. Sachtler WMH (1995) Ber Bunsen Phys Chem 99:1295

    Article  CAS  Google Scholar 

  15. Mawson S, Mccutchen MS, Lim PK, Roberts GW (1993) Energ Fuel 7:257

    Article  CAS  Google Scholar 

  16. Choi Y, Liu P (2009) J Am Chem Soc 131:13054

    Article  CAS  Google Scholar 

  17. Du YH, Chen DA, Tsai KR (1987) Appl Catal 35:77

    Article  CAS  Google Scholar 

  18. Ehwald H, Ewald H, Gutschick D, Hermann M, Miessner H, Ohlmann G, Schierhorn E (1991) Appl Catal 76:153

    Article  CAS  Google Scholar 

  19. Ma XF, Deng HQ, Yang MM, Li WX (2008) J Chem Phys 129

  20. Ma XF, Su HY, Deng HQ, Li WX (2011) Catal Today 160:228

    Article  CAS  Google Scholar 

  21. Vanderlee G, Schuller B, Post H, Favre TLF, Ponec V (1986) J Catal 98:522

    Article  CAS  Google Scholar 

  22. Takeuchi A, Katzer JR (1982) J Phys Chem-Us 86:2438

    Article  CAS  Google Scholar 

  23. Borer AL, Prins R (1993) J Catal 144:439

    Article  CAS  Google Scholar 

  24. Borer AL, Prins R, Goodwin JG, Dejong KP, Bell AT, Solymosi F, Gonzalez RD, Koningsberger DC, Pinna F, Johnston P, Ponec V, Waugh KC, Coenen JWE, Ichikawa M, Klier K, Schmal M, Sachtler WMH (1993) Stud Surf Sci Catal 75:765

    Article  CAS  Google Scholar 

  25. Burch R, Hayes MJ (1997) J Catal 165:249

    Article  CAS  Google Scholar 

  26. Besenbacher F, Chorkendorff I, Clausen BS, Hammer B, Molenbroek AM, Norskov JK, Stensgaard I (1913) Science 1998:279

    Google Scholar 

  27. Chen MS, Kumar D, Yi CW, Goodman DW (2005) Science 310:291

    Article  CAS  Google Scholar 

  28. Greeley J, Jaramillo TF, Bonde J, Chorkendorff IB, Norskov JK (2006) Nat Mater 5:909

    Article  CAS  Google Scholar 

  29. Jacobsen CJH, Dahl S, Clausen BS, Bahn S, Logadottir A, Norskov JK (2001) J Am Chem Soc 123:8404

    Article  CAS  Google Scholar 

  30. Studt F, Abild-Pedersen F, Bligaard T, Sorensen RZ, Christensen CH, Norskov JK (2008) Science 320:1320

    Article  CAS  Google Scholar 

  31. Liu P, Norskov JK (2001) Phys Chem Chem Phys 3:3814

    Article  CAS  Google Scholar 

  32. Yang Y, White MG, Liu P (2011) J Phys Chem C 116:248

    Article  Google Scholar 

  33. Tao F, Grass ME, Zhang Y, Butcher DR, Renzas JR, Liu Z, Chung JY, Mun BS, Salmeron M, Somorjai GA (2008) Science 322:932

    Article  CAS  Google Scholar 

  34. Shu J, Bongondo BEW, Grandjean BPA, Adnot A, Kaliaguine S (1993) Surf Sci 291:129

    Article  CAS  Google Scholar 

  35. Nerlov J, Chorkendorff I (1999) J Catal 181:271

    Article  CAS  Google Scholar 

  36. Menning CA, Hwu HH, Chen JG (2006) J Phys Chem B 110:15471

    Article  CAS  Google Scholar 

  37. Hirsimaki M, Lampimaki M, Lahtonen K, Chorkendorff I, Valden M (2005) Surf Sci 583:157

    Article  Google Scholar 

  38. Gonzalez S, Neyman KM, Shaikhutdinov S, Freund HJ, Illas F (2007) J Phys Chem C 111:6852

    Article  CAS  Google Scholar 

  39. Bagot PAJ, Cerezo A, Smith GDW, Visart De Bocarmé T, Godfrey TJ (2007) Surf Interface Anal 39:172

    Article  CAS  Google Scholar 

  40. Norskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Nat Chem 1:37

    Article  CAS  Google Scholar 

  41. Norskov JK, Bligaard T, Kleis J (2009) Science 324:1655

    Article  CAS  Google Scholar 

  42. GreeleyJ, Stephens IEL, Bondarenko AS, Johansson TP, Hansen HA, Jaramillo TF, RossmeislJ, ChorkendorffI, ChorkendorffI, Nørskov JK (2009) Nat Chem 1:552

    Article  Google Scholar 

  43. Kresse G, Hafner J (1993) Phys Rev B 47:558

    Article  CAS  Google Scholar 

  44. Kresse G, Furthmuller J (1996) Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  45. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  46. Henkelman G, Uberuaga BP, Jonsson H (2000) J Chem Phys 113:9901

    Article  CAS  Google Scholar 

  47. Mills G, Jonsson H, Schenter GK (1995) Surf Sci 324:305

    Article  CAS  Google Scholar 

  48. González S, Sousa C, Illas F (2005) J Phys Chem B 109:4654

    Article  Google Scholar 

  49. González S, Sousa C, Illas F (2006) J Catal 239:431

    Article  Google Scholar 

  50. Gonzalez S, Sousa C, Illas F (2007) Phys Chem Chem Phys 9:2877

    Article  CAS  Google Scholar 

  51. Mavrikakis M, Rempel J, Greeley J, Hansen LB, Norskov JK (2002) J Chem Phys 117:6737

    Article  CAS  Google Scholar 

  52. Zhang CJ, Hu P, Lee MH (1999) Surf Sci 432:305

    Article  CAS  Google Scholar 

  53. Takeuchi A, Katzer JR (1981) J Phys Chem-Us 85:937

    Article  CAS  Google Scholar 

  54. Kapur N, Hyun J, Shan B, Nicholas JB, Cho K (2010) J Phys Chem C 114:10171

    Article  CAS  Google Scholar 

  55. Chuang SC, Goodwin JG, Wender I (1985) J Catal 95:435

    Article  CAS  Google Scholar 

  56. Katzer JR, Sleight AW, Gajardo P, Michel JB, Gleason EF, Mcmillan S (1981) Faraday Discuss 72:121

    Article  Google Scholar 

  57. Mei D, Rousseau R, Kathmann SM, Glezakou V-A, Engelhard MH, Jiang W, Wang C, Gerber MA, White JF, Stevens DJ (2010) J Catal 271:325

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the help Dr. James Muckerman at Brookhaven National Laboratory for help in developing the KMC codes. This research was carried out at Brookhaven National Laboratory under contract DEAC02-98CH10886 with the US Department of Energy, Division of Chemical Sciences. The calculations were carried out using computational resources at the Center for Functional Nanomaterials at Brookhaven National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 247 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, L., Liu, P. Ethanol Synthesis from Syngas on Transition Metal-Doped Rh(111) Surfaces: A Density Functional Kinetic Monte Carlo Study. Top Catal 57, 125–134 (2014). https://doi.org/10.1007/s11244-013-0168-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0168-1

Keywords

Navigation