Skip to main content
Log in

Green Propulsion: Catalysts for the European FP7 Project GRASP

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The Green Advanced Space Propulsion (GRASP) project investigated the issue of green propulsion and the possibility of replacing presently used toxic hydrazine propellant by green propellants. This project was financed by the European Commission in the 7th Framework Program (FP7). A large data base of about 100 green propellants was compiled including physical and material properties, toxicity and performance data. A preliminary selection was conducted to identify the most promising green propellant candidates for experimental work. Catalytic ignition, a very simple and robust subsystem with restart possibility, was thoroughly investigated focusing on the catalyst–propellant couple. For the whole project, more than 50 catalyst variations have been prepared comprising ceramic pellets, ceramic monoliths, metallic foams or gauzes. Very promising green propellant candidates, e.g. ammonium dinitramide-based monopropellants, have been methodically investigated leading to the development and manufacturing of advanced pellet-based catalysts for ionic liquid decomposition. The decomposition of concentrated hydrogen peroxide (87.5 wt%) for bipropellant applications led to a thorough investigation of monolithic catalysts. Examination of monolith parameters (channel shape, channel density, material) and preparation parameters (washcoating procedure, active phase precursor) led to the development of very efficient catalysts showing high activity and stability: 17.9 kg of H2O2 could be decomposed for the first time by a single monolithic catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Batonneau Y, Kappenstein C, Keim W (2008) Catalytic decomposition of energetic compounds: gas generator, propulsion. In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis, vol 5, Chap 12.7, 2nd edn. VCh-Wiley, Weinheim

    Google Scholar 

  2. Fahrat K, Batonneau Y, Brahmi R, Kappenstein C (2011) Application of ionic liquids to space propulsion. In: Handy S (ed) Applications of ionic liquid in science and technology, Chap 21g. Intech Publisher, Rijecka, Croatia; ISBN 978-953-307-605-8

  3. Takahashi K, Ikuta T, Dan Y, Nagayama K, Kishida M (2006) Catalytic porous microchannel for hydrogen peroxide MEMS thruster. In: Proceeding of the 23rd sensor symposium, pp 513–516

  4. Widdis SJ, Asante K, Hitt DL, Cross MW, Varhue WJ, McDevitt MR (2013) A MEMS-based catalytic microreactor for a H2O2 monopropellant micropropulsion system. IEEE/ASME Trans Mechatron 18:1250–1258

    Article  Google Scholar 

  5. Gauer M, Telitschkin D, Gotzig U, Batonneau Y, Rangsten P, Ivanov M, Palmer P, Wiegerink RJ (2013) PRECISE—preliminary results of the MEMS-based μCPS. AIAA paper 2013-3784, ISSN: 0146-3705. http://arc.aiaa.org/. Accessed 14 Nov 2013

  6. International conferences on green propellants for space propulsion: 1st, Nordwijk, the Netherlands, June 2001 (ESA Special Publication SP-484); 2nd, Sardinia, Italy, June 2004 (ESA Special Publication SP-557); 3rd, Poitiers, France, September 2006 (ESA Special Publication SP-635), ISBN 978-92-909294-6-8

  7. Schmidt EW, Wucherer E (2004) Hydrazine(s) vs. nontoxic propellants-where do we stand now. In: Second international conference on green propellants for space applications, Cagliari, Sardinia, Italy. ESA Special Publication SP-557; ISBN 978-92-909286-6-9

  8. Schneider SJ (1998) On-board propulsion system analysis of high density propellants, NASA/TM 1998-208811. NASA Lewis Research Center, Cleveland

  9. http://ec.europa.eu/environment/chemicals/reach/review_2012_en.htm. Accessed 14 Nov 2013

  10. http://echa.europa.eu/home_en.asp. Accessed 14 Nov 2013

  11. Bombelli V, Simon D, Marée T, Moerel JL (2003) Economic benefits of the use of non-toxic monopropellants for spacecraft applications. AIAA paper 2003-4783; ISSN: 0146-3705, ISSN: 0146-3705. http://arc.aiaa.org/. Accessed 14 Nov 2013

  12. Boman M, Ford M (2004) Reduced hazard propellant-propulsion system impact. In: Second international conference on green propellants for space applications, Cagliari, Sardinia, Italy. ESA Special Publication SP-557, ISBN 978-92-909286-6-9

  13. Anflo K, Möllerberg R (2009) Flight demonstration of new thruster and green propellant technology on the PRISMA satellite. Acta Astronaut 65:1238–1249

    Article  CAS  Google Scholar 

  14. Scharlemann C (2011) Green Advanced space propulsion : a project status. AIAA paper 2011-5630. ISSN: 0146-3705. http://arc.aiaa.org/. Accessed 14 Nov 2013

  15. Scharlemann C (2009) Green propellants: global assessment of suitability and applicability. In: Third European conference for aerospace sciences (EUCASS), session Propulsion System, July 2009, Versailles, France. https://www.grasp-fp7.eu/grasp/files/1.pdf. Accessed 14 Nov 2013

  16. http://www.grasp-fp7.eu. Accessed 14 Nov 2013

  17. Wingborg N, de Flon J (2010) Characterization of the ADN-based liquid monopropellant FLP-106. Space Propulsion 2010, session 3, San Sebastian, Spain, 3–5 May. https://www.grasp-fp7.eu/grasp/files/9.pdf. Accessed 14 Nov 2013

  18. Amariei D, Courthéoux L, Rossignol S, Batonneau Y, Kappenstein C, Ford M, Pillet N (2005) Influence of the fuel on the thermal and catalytic decompositions of ionic liquid monopropellants. AIAA paper 2005-3980, ISSN: 0146-3705. http://arc.aiaa.org/. Accessed 14 Nov 2013

  19. Amariei D, Rossignol S, Kappenstein C, Joulin JP (2006) Shape forming of Pt/Al2O3–Si sol–gel catalysts for space catalytic applications. Stud Surf Sci Catal 162:969–976

    Article  CAS  Google Scholar 

  20. Courthéoux L, Gautron E, Rossignol S, Kappenstein C (2005) Transformation of supported platinum on silicon doped alumina during the catalytic decomposition of energetic ionic liquid. J Catal 232:10–18

    Article  Google Scholar 

  21. Palmer MJ, Musker AJ, Roberts GT (2011) Experimental assessment of heterogeneous catalysts for the decomposition of hydrogen peroxide. AIAA paper 2011-5695, ISSN: 0146-3705. http://arc.aiaa.org/. Accessed 14 Nov 2013

  22. Palmer MJ, Roberts GT, Musker AJ (2011) Design, build and test of a 20 N hydrogen peroxide monopropellant thruster. AIAA paper 2011-5697, ISSN: 0146-3705. http://arc.aiaa.org/. Accessed 14 Nov 2013

  23. Bonifacio S, Festa G, Sorge AR (2013) Novel structured catalysts for hydrogen peroxide decomposition in monopropellant and hybrid rockets. J Propuls Power 29:1130–1137

    Article  CAS  Google Scholar 

  24. Bonifacio S, Festa G, Sorge AR (2012) Catalytic ignition in hydrogen peroxide-based space propulsion systems. AIAA paper 2012-3966, ISSN: 0146-3705. http://arc.aiaa.org/. Accessed 14 Nov 2013

  25. Courthéoux L, Amariei D, Rossignol S, Kappenstein C (2006) Thermal and catalytic decomposition of HNF and HAN ionic liquid as propellant. Appl Catal B 62:217–225

    Article  Google Scholar 

  26. Farhat K, Batonneau Y, Florea O, Kappenstein C, Ford M (2006) Preparation and use of ammonium azide as a fuel additive to ionic oxidizer solutions. Physico-chemical properties, thermal and catalytic decomposition. AIAA paper 2006-4564, ISSN: 0146-3705. http://arc.aiaa.org/. Accessed 14 Nov 2013

  27. Amariei D, Courthéoux L, Rossignol S, Kappenstein C (2007) Catalytic and thermal decomposition of ionic liquid monopropellants using a dynamic reactor. Comparison of powder and sphere-shaped catalysts. Chem Eng Process 46:165–174

    Article  CAS  Google Scholar 

  28. Farhat K, Cong W, Batonneau Y, Kappenstein C (2009) Improvement of catalytic decomposition of ammonium nitrate with new bimetallic catalysts. AIAA paper 2009-4963, ISSN: 0146-3705. http://arc.aiaa.org/. Accessed 14 Nov 2013

  29. Courthéoux L, Amariei D, Rossignol S, Kappenstein C (2005) Facile catalytic decomposition at low temperature of energetic ionic liquid as hydrazine substitute. Eur J Inorg Chem 12:2293–2295

    Article  Google Scholar 

  30. Batonneau Y, Courthéoux L, Esteves P, Pirault-Roy L, Rossignol S, Kappenstein C, Pillet N (2004) Design and development of a dynamic reactor with online analysis for the catalytic decomposition of monopropellants. AIAA paper 2004-3835, ISSN: 0146-3705. http://arc.aiaa.org/. Accessed 14 Nov 2013

  31. CTI Company: Céramiques Techniques et Industrielles, Salindres, France: http://www.ctisa.fr/eng/. Accessed 14 Nov 2013

  32. Amariei D, Amrousse R, Batonneau Y, Brahmi R, Kappenstein C, Cartoixa B (2010) Monolithic catalysts for the decomposition of energetic compounds. Stud Surf Sci Catal 175:35–42

    Article  CAS  Google Scholar 

  33. Krejci D, Woschnak A, Schiebl M, Scharlemann C, Ponweiser K, Brahmi R, Batonneau Y, Kappenstein C (2013) Assessment of catalysts for hydrogen-peroxide-based thrusters in a flow reactor. J Propuls Power 29:321–330

    Article  CAS  Google Scholar 

  34. Krejci D, Woschnak A, Scharlemann C, Ponweiser K (2013) Performance assessment of 1 N bipropellant thruster using green propellants H2O2/kerosene. J Propuls Power 29:285–289

    Article  CAS  Google Scholar 

  35. Brahmi R, Fahrat K, Amrousse R, Batonneau Y, Kappenstein C, Cartoixa B (2010) Role of support shape on the catalytic decomposition of different monopropellants for green propulsion. Space Propulsion 2010, session 3, San Sebastian, Spain, 3–5 May. https://www.grasp-fp7.eu/grasp/files/10.pdf. Accessed 14 Nov 2013

  36. Aronne A, Turco M, Sorge AR, Bagnasco G, Marchese S, Fanelli E, Pernice P (2010) Sol–gel synthesis of manganese–yttrium–zirconium mixed oxide nanocomposites as catalysts for decomposition of hydrogen peroxide. Space Propulsion 2010, session 33, San Sebastian, Spain, 3–5 May. https://www.grasp-fp7.eu/grasp/files/5.pdf. Accessed 14 Nov 2013

  37. Woschnak A, Krejci D, Scharlemann C (2010) Investigation of catalytic decomposition of hydrogen peroxide for miniaturized chemical thrusters. Space Propulsion 2010, session 33, San Sebastian, Spain, 3–5 May. https://www.grasp-fp7.eu/grasp/files/7.pdf. Accessed 14 Nov 2013

  38. Palmer MJ, Musker AJ, Roberts GT, Ponce-de-Leon C (2010) A method of ranking candidate catalysts for the decomposition of hydrogen peroxide. Space Propulsion 2010, session 33, San Sebastian, Spain, 3–5 May. https://www.grasp-fp7.eu/grasp/files/11.pdf. Accessed 14 Nov 2013

Download references

Acknowledgments

The research leading to these results has received funding from the European Community’s 7th Framework Program (FP7/2007–2013) under Grant Agreement No. 218819. The GRASP team is in particular indebted to the REA project officer Paula Mota-Alves for the competent and helpful support of this effort. The present paper was made possible only through the efforts of, amongst others, the following people from the GRASP team members: Fachhochschule Wiener Neustadt: Carsten Scharlemann; Swedish Defence Research Agency: Niklas Wingborg; University of Southampton: Graham Roberts, Matt Palmer, Robert-Jan Koopmans; DELTACAT Limited: Antony Musker; University of Naples “Federico II”: Annamaria Russo, Salvatore Bonifacio, F. Scelzo, D. Maiello, G. Festa; German Aerospace Center: Oskar Haidn, Jörg Riccius; Evonik Degussa: Stefan Leininger; SNECMA-SAFRAN: Michel Muszynski, Serge Fouché; Ceramiques Techniques et Industrielles (CTI): Nadine Delbianco, Bruno Cartoixa, Jean-Pierre Joulin; Instytut Lotnictwa-Institute of Aviation: Zbigniew Wolejsza, Wojciech Florczuk, Kamil Sobczak, Michał Folusiak and Karol Świderski; FOTEC: Alexander Woschnak, David Krejci, Markus Schiebl.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Kappenstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batonneau, Y., Brahmi, R., Cartoixa, B. et al. Green Propulsion: Catalysts for the European FP7 Project GRASP. Top Catal 57, 656–667 (2014). https://doi.org/10.1007/s11244-013-0223-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0223-y

Keywords

Navigation