Skip to main content
Log in

Electrocatalytic Reduction of Carbon Dioxide: Let the Molecules Do the Work

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

This review summarizes the development of electrochemical CO2 reduction catalysts in the UNC Energy Frontier Research Center for Solar Fuels. Two strategies for converting CO2 to CO or formate have been explored. In one, polypyridyl complexes of Ru(II) have been used to reduce CO2 to CO in acetonitrile and in acetonitrile/water mixtures. In the absence of CO2 water is reduced to H2 by these complexes. With added weak acids in acetonitrile with added water and CO2, reduction to syngas mixtures of CO and H2 is observed. A single polypyridyl complex of Ru(II) has been shown to be both a catalyst for water oxidation and CO2 reduction in an electrochemical cell for CO2 splitting into CO and O2. In parallel, Ir pincer catalysts have been shown to act as selective electrocatalysts for reducing CO2 to formate in acetonitrile with added water and in pure water without competition from electrocatalytic H2 production. Details of the catalytic mechanisms of each have also been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Fig. 1
Scheme 7
Fig. 2
Scheme 8
Fig. 3
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Fig. 4
Scheme 14
Fig. 5
Scheme 15
Fig. 6
Scheme 16

Similar content being viewed by others

References

  1. Climate Change: Evidence, Impacts, and Choices: Set of 3 Booklets (2012). National Research Council. The National Academies Press, Washington, DC

  2. Treadway JA, Moss JA, Meyer TJ (1999) Inorg Chem 38(20):4386–4387

    Article  CAS  Google Scholar 

  3. Meyer TJ, Papanikolas JM, Heyer CM (2011) Catal Lett 141(1):1–7

    Article  CAS  Google Scholar 

  4. Song WJ, Chen ZF, Brennaman MK, Concepcion JJ, Patrocinio AOT, Iha NYM, Meyer TJ (2011) Pure Appl Chem 83(4):749–768

    Article  CAS  Google Scholar 

  5. Alibabaei L, Luo HL, House RL, Hoertz PG, Lopez R, Meyer TJ (2013) J Mater Chem A 1(13):4133–4145

    Article  CAS  Google Scholar 

  6. House R, Alibabaei L, Bonino C, Hoertz P, Trainham J, Meyer TJ (2013) PV Mag 2013(3):87–89

    Google Scholar 

  7. Tsubomura H, Matsumura M, Nomura Y, Amamiya T (1976) Nature 261(5559):402–403

    Article  CAS  Google Scholar 

  8. Graetzel M (2009) Acc Chem Res 42(11):1788–1798

    Article  Google Scholar 

  9. Jose R, Thavasi V, Ramakrishna S (2009) J Am Ceram Soc 92(2):289–301

    Article  CAS  Google Scholar 

  10. Benson EE, Kubiak CP, Sathrum AJ, Smieja JM (2009) Chem Soc Rev 38(1):89–99

    Article  CAS  Google Scholar 

  11. Costentin C, Robert M, Saveant JM (2013) Chem Soc Rev 42(6):2423–2436

    Article  CAS  Google Scholar 

  12. Nagao H, Mizukawa T, Tanaka K (1994) Inorg Chem 33(15):3415–3420

    Article  CAS  Google Scholar 

  13. Huff CA, Sanford MS (2011) J Am Chem Soc 133(45):18122–18125

    Article  CAS  Google Scholar 

  14. Wesselbaum S, vom Stein T, Klankermayer J, Leitner W (2012) Angew Chem Int Ed 51(30):7499–7502

    Article  CAS  Google Scholar 

  15. Beley M, Collin JP, Ruppert R, Sauvage JP (1984) J Chem Soc, Chem Commun 19:1315–1316

    Article  Google Scholar 

  16. Froehlich JD, Kubiak CP (2012) Inorg Chem 51(7):3932–3934

    Article  CAS  Google Scholar 

  17. Hammouche M, Lexa D, Momenteau M, Saveant JM (1991) J Am Chem Soc 113(22):8455–8466

    Article  CAS  Google Scholar 

  18. Hawecker J, Lehn JM, Ziessel R (1984) J Chem Soc, Chem Commun 6:328–330

    Article  Google Scholar 

  19. Bourrez M, Molton F, Chardon-Noblat S, Deronzier A (2011) Angew Chem Int Ed 50(42):9903–9906

    Article  CAS  Google Scholar 

  20. Dubois DL, Miedaner A, Haltiwanger RC (1991) J Am Chem Soc 113(23):8753–8764

    Article  CAS  Google Scholar 

  21. Smieja JM, Kubiak CP (2010) Inorg Chem 49(20):9283–9289

    Article  CAS  Google Scholar 

  22. Costentin C, Drouet S, Robert M, Saveant J-M (2012) Science 338(6103):90–94

    Article  CAS  Google Scholar 

  23. Bruce MRM, Megehee E, Sullivan BP, Thorp H, Otoole TR, Downard A, Meyer TJ (1988) Organometallics 7(1):238–240

    Article  CAS  Google Scholar 

  24. Pugh JR, Bruce MRM, Sullivan BP, Meyer TJ (1991) Inorg Chem 30(1):86–91

    Article  CAS  Google Scholar 

  25. Sullivan BP, Meyer TJ (1984) J Chem Soc, Chem Commun 18:1244–1245

    Article  Google Scholar 

  26. Sullivan BP, Bolinger CM, Conrad D, Vining WJ, Meyer TJ (1985) J Chem Soc, Chem Commun 20:1414–1415

    Article  Google Scholar 

  27. Sullivan BP, Meyer TJ (1986) Organometallics 5(7):1500–1502

    Article  CAS  Google Scholar 

  28. O’Toole TR, Margerum LD, Westmoreland TD, Vining WJ, Murray RW, Meyer TJ (1985) J Chem Soc, Chem Commun 20:1416–1417

    Article  Google Scholar 

  29. Otoole TR, Sullivan BP, Bruce MRM, Margerum LD, Murray RW, Meyer TJ (1989) J Electroanal Chem 259(1–2):217–239

    Article  CAS  Google Scholar 

  30. Hori Y, Wakebe H, Tsukamoto T, Koga O (1994) Electrochim Acta 39(11–12):1833–1839

    Article  CAS  Google Scholar 

  31. DiMeglio JL, Rosenthal J (2013) J Am Chem Soc 135(24):8798–8801

    Article  CAS  Google Scholar 

  32. Hori Y, Murata A, Takahashi R, Suzuki S (1988) J Chem Soc, Chem Commun 1:17–19

    Article  Google Scholar 

  33. Kuhl KP, Cave ER, Abram DN, Jaramillo TF (2012) Energy Environ Sci 5(5):7050–7059

    Article  CAS  Google Scholar 

  34. Chen YH, Li CW, Kanan MW (2012) J Am Chem Soc 134(49):19969–19972

    Article  CAS  Google Scholar 

  35. Ferry JG (1995) Annu Rev Microbiol 49:305–333

    Article  CAS  Google Scholar 

  36. Chen ZF, Chen CC, Weinberg DR, Kang P, Concepcion JJ, Harrison DP, Brookhart MS, Meyer TJ (2011) Chem Commun 47(47):12607–12609

    Article  CAS  Google Scholar 

  37. Chen ZF, Glasson CRK, Holland PL, Meyer TJ (2013) Phys Chem Chem Phys 15(24):9503–9507

    Article  CAS  Google Scholar 

  38. Creutz C, Chou MH (2007) J Am Chem Soc 129(33):10108–10109

    Article  CAS  Google Scholar 

  39. Chen ZF, Kang P, Zhang MT, Meyer TJ (2014) Chem Commun 50:335–337

  40. Vannucci AK, Gagliardi CJ, Concepcion JJ, Binstead RA, Harrison DP, Jurss JW, Nocera DG, Meyer TJ Chem Rev (in preparation)

  41. Concepcion JJ, Jurss JW, Templeton JL, Meyer TJ (2008) J Am Chem Soc 130(49):16462–16463

    Article  CAS  Google Scholar 

  42. Chen ZF, Concepcion JJ, Meyer TJ (2011) Dalton Trans 40(15):3789–3792

    Article  CAS  Google Scholar 

  43. Chen ZF, Concepcion JJ, Brennaman MK, Kang P, Norris MR, Hoertz PG, Meyer TJ (2012) Proc Natl Acad Sci USA 109(39):15606–15611

    Article  CAS  Google Scholar 

  44. Johnson TC, Morris DJ, Wills M (2010) Chem Soc Rev 39(1):81–88

    Article  CAS  Google Scholar 

  45. Rice C, Ha RI, Masel RI, Waszczuk P, Wieckowski A, Barnard T (2002) J Power Sources 111(1):83–89

    Article  CAS  Google Scholar 

  46. Noyori R, Hashiguchi S (1997) Acc Chem Res 30(2):97–102

    Article  CAS  Google Scholar 

  47. Li H, Opgenorth PH, Wernick DG, Rogers S, Wu TY, Higashide W, Malati P, Huo YX, Cho KM, Liao JC (2012) Science 335(6076):1596

    Article  CAS  Google Scholar 

  48. Jessop PG, Joo F, Tai CC (2004) Coordin Chem Rev 248(21–24):2425–2442

    Article  CAS  Google Scholar 

  49. Chakraborty S, Zhang J, Krause JA, Guan H (2010) J Am Chem Soc 132(26):8872–8873

    Article  CAS  Google Scholar 

  50. Park S, Bezier D, Brookhart M (2012) J Am Chem Soc 134(28):11404–11407

    Article  CAS  Google Scholar 

  51. Arana C, Yan S, Keshavarzk M, Potts KT, Abruna HD (1992) Inorg Chem 31(17):3680–3682

    Article  CAS  Google Scholar 

  52. Bolinger CM, Story N, Sullivan BP, Meyer TJ (1988) Inorg Chem 27(25):4582–4587

    Article  CAS  Google Scholar 

  53. Caix C, Chardon-Noblat S, Deronzier A (1997) J Electroanal Chem 434(1–2):163–170

    Article  CAS  Google Scholar 

  54. Slater S, Wagenknecht JH (1984) J Am Chem Soc 106(18):5367–5368

    Article  CAS  Google Scholar 

  55. Rail MD, Berben LA (2011) J Am Chem Soc 133(46):18577–18579

    Article  CAS  Google Scholar 

  56. Ishida H, Tanaka H, Tanaka K, Tanaka T (1987) J Chem Soc, Chem Commun 2:131–132

    Article  Google Scholar 

  57. Tanaka R, Yamashita M, Nozaki K (2009) J Am Chem Soc 131(40):14168–14169

    Article  CAS  Google Scholar 

  58. Schmeier TJ, Dobereiner GE, Crabtree RH, Hazari N (2011) J Am Chem Soc 133(24):9274–9277

    Article  CAS  Google Scholar 

  59. Langer R, Diskin-Posner Y, Leitus G, Shimon LJW, Ben-David Y, Milstein D (2011) Angew Chem Int Ed 50(42):9948–9952

    Article  CAS  Google Scholar 

  60. Kang P, Cheng C, Chen ZF, Schauer CK, Meyer TJ, Brookhart M (2012) J Am Chem Soc 134(12):5500–5503

    Article  CAS  Google Scholar 

  61. Gojlo E, Smiechowski M, Panuszko A, Stangret J (2009) J Phys Chem B 113(23):8128–8136

    Article  CAS  Google Scholar 

  62. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  63. Savéant JM (2006) Elements of molecular and biomolecular electrochemistry: an electrochemical approach to electron transfer chemistry. The George Fisher Baker non-resident lectureship in chemistry at Cornell University. Wiley, Hoboken

    Book  Google Scholar 

  64. Kang P, Meyer TJ, Brookhart M (2013) Chem Sci 4(9):3497–3502

    Article  CAS  Google Scholar 

  65. Raebiger JW, Miedaner A, Curtis CJ, Miller SM, Anderson OP, DuBois DL (2004) J Am Chem Soc 126(17):5502–5514

    Article  CAS  Google Scholar 

  66. Zhang S, Kang P, Meyer TJ (2014) J Am Chem Soc 136:1734–1737

    Article  CAS  Google Scholar 

  67. Stocker M (1999) Microporous Mesoporous Mater 29(1–2):3–48

    Article  CAS  Google Scholar 

  68. Vannucci AK, Alibabaei L, Losego MD, Concepcion JJ, Kalanyan B, Parsons GN, Meyer TJ (2013) Proc Natl Acad Sci 110(52):20918–20922

    Article  CAS  Google Scholar 

  69. Lapides AM, Ashford DL, Hanson K, Torelli DA, Templeton JL, Meyer TJ (2013) J Am Chem Soc 135(41):15450–15458

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from the UNC EFRC: Center for Solar Fuels, an Energy Frontier Research Center funded by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001011. We also thank Dr. Manuel Mendez for help on Scheme 3.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maurice Brookhart or Thomas J. Meyer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, P., Chen, Z., Brookhart, M. et al. Electrocatalytic Reduction of Carbon Dioxide: Let the Molecules Do the Work. Top Catal 58, 30–45 (2015). https://doi.org/10.1007/s11244-014-0344-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-014-0344-y

Keywords

Navigation