Skip to main content
Log in

Prospect of Using Nanoalloys of Partly Miscible Rhodium and Palladium in Three-Way Catalysis

  • Original Article
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Alloys of partly miscible metals attract a growing attention due to their unique physicochemical properties. Palladium–rhodium solid solution was synthesized using a multi-metal single precursor concept. Pd–Rh/γ-Al2O3 catalyst was prepared by an impregnation of the support with a solution of a precursor containing organic ligand. The Pd:Rh ratio in the alloy was 3:2. The samples were characterized by a powder X-ray diffraction analysis, a transmission electron microscopy, electron paramagnetic resonance and photoluminescence spectroscopies. The catalytic behavior of the samples was examined in CO oxidation reaction under prompt thermal aging conditions. The stability of the bimetallic catalyst was found to be improved if compare with monometallic reference samples. Mutual anchoring of palladium and rhodium prevents both the surface migration of Pd particles followed by their agglomeration and the diffusion of rhodium ions into the bulk of alumina support. Improved metal-support interaction for the studied system was found to be facilitated by presence of electron donor sites on the surface of the support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shubin YV, Plyusnin PE, Sharafutdinov MR, Makotchenko EV, Korenev SV (2017) Successful synthesis and thermal stability of immiscible metal Au–Rh, Au–Ir and Au–Ir–Rh nanoalloys. Nanotechnology 28:205302

    Article  CAS  PubMed  Google Scholar 

  2. Pechenyuk SI, Zolotarev АА, Gosteva AN, Domonov DP, Shimkin АА (2017) Crystal structures and thermal behaviour of double complex compounds incorporating the [Cr{CO(NH2)2}6]3+ cation. J Mol Struct 1147:388–396

    Article  CAS  Google Scholar 

  3. Vedyagin AA, Volodin AM, Stoyanovskii VO, Kenzhin RM, Slavinskaya EM, Mishakov IV, Plyusnin PE, Shubin YV (2014) Stabilization of active sites in alloyed Pd-Rh catalysts on γ-Al2O3 support. Catal Today 238:80–85

    Article  CAS  Google Scholar 

  4. Oezaslan M, Hasche F, Strasser P (2011) In situ observation of bimetallic alloy nanoparticle formation and growth using high-temperature XRD. Chem Mater 23:2159–2165

    Article  CAS  Google Scholar 

  5. Yakovlev IV, Volodin AM, Zaikovskii VI, Stoyanovskii VO, Lapina OB, Vedyagin AA (2018) Stabilizing effect of the carbon shell on phase transformation of the nanocrystalline alumina particles. Ceram Int 44:4801–4806

    Article  CAS  Google Scholar 

  6. Karnaukhov T, Vedyagin A, Mishakov I, Bedilo A, Volodin A (2018) Synthesis and characterization of nanocrystalline M-Mg-O and carbon-coated MgO systems. Mater Sci Forum 917:157–161

    Article  Google Scholar 

  7. Zaikovskii VI, Volodin AM, Stoyanovskii VO, Cherepanova SV, Vedyagin AA (2018) Effect of carbon coating on spontaneous C12A7 whisker formation. Appl Surf Sci 444:336–338

    Article  CAS  Google Scholar 

  8. Volodin AM, Zaikovskii VI, Kenzhin RM, Bedilo AF, Mishakov IV, Vedyagin AA (2017) Synthesis of nanocrystalline calcium aluminate C12A7 under carbon nanoreactor conditions. Mater Lett 189:210–212

    Article  CAS  Google Scholar 

  9. Shipitcyna A, Kinnunen NM, Hilli Y, Suvanto M, Pakkanen TA (2016) Characterization and activity of Pd–Ir catalysts in CO and C3H6 oxidation under stoichiometric conditions. Top Catal 59:1097–1103

    Article  CAS  Google Scholar 

  10. Hilli Y, Kinnunen NM, Suvanto M, Savimäki A, Kallinen K, Pakkanen TA (2015) Preparation and characterization of Pd-Ni bimetallic catalysts for CO and C3H6 oxidation under stoichiometric conditions. Appl Catal A 497:85–95

    Article  CAS  Google Scholar 

  11. Shang H, Wang Y, Cui Y, Fang R, Hu W, Gong M, Chen Y (2015) Catalytic performance of Pt-Rh/CeZrYLa + LaAl with stoichiometric natural gas vehicles emissions. Chin J Catal 36:290–298

    Article  CAS  Google Scholar 

  12. Cai F, Yang L, Shan S, Mott D, Chen BH, Luo J, Zhong C-J (2016) Preparation of PdCu alloy nanocatalysts for nitrate hydrogenation and carbon monoxide oxidation. Catalysts 6:96

    Article  CAS  Google Scholar 

  13. Fernandes VR, Bossche MVD, Knudsen J, Farstad MH, Gustafson J, Venvik HJ, Grönbeck H, Borg A (2016) Reversed hysteresis during CO oxidation over PdAg(100). ACS Catal 6:4154–4161

    Article  CAS  Google Scholar 

  14. De Clercq A, Margeat O, Sitja G, Henry CR, Giorgio S (2016) Core-shell Pd-Pt nanocubes for the CO oxidation. J Catal 336:33–40

    Article  CAS  Google Scholar 

  15. Kobayashi H, Kusada K, Kitagawa H (2015) Creation of novel solid-solution alloy nanoparticles on the basis of density-of-states engineering by interelement fusion. Acc Chem Res 48:1551–1559

    Article  CAS  PubMed  Google Scholar 

  16. Shan S, Petkov V, Prasai B, Wu J, Joseph P, Skeete Z, Kim E, Mott D, Malis O, Luo J, Zhong C-J (2015) Catalytic activity of bimetallic catalysts highly sensitive to the atomic composition and phase structure at the nanoscale. Nanoscale 7:18936–18948

    Article  CAS  PubMed  Google Scholar 

  17. Renzas JR, Huang W, Zhang Y, Grass ME, Hoang DT, Alayoglu S, Butcher DR, Tao F, Liu Z, Somorjai GA (2011) Rh1−xPdx nanoparticle composition dependence in CO oxidation by oxygen: catalytic activity enhancement in bimetallic systems. Phys Chem Chem Phys 13:2556–2562

    Article  CAS  PubMed  Google Scholar 

  18. Renzas JR, Huang W, Zhang Y, Grass ME, Somorjai GA (2011) Rh1−xPdx nanoparticle composition dependence in CO oxidation by NO. Catal Lett 141:235–241

    Article  CAS  Google Scholar 

  19. Oh SH, Triplett T (2014) Reaction pathways and mechanism for ammonia formation and removal over palladium-based three-way catalysts: multiple roles of CO. Catal Today 231:22–32

    Article  CAS  Google Scholar 

  20. Kang SB, Han SJ, Nam I-S, Cho BK, Kim CH, Oh SH (2014) Detailed reaction kinetics for double-layered Pd/Rh bimetallic TWC monolith catalyst. Chem Eng J 241:273–287

    Article  CAS  Google Scholar 

  21. Bounechada D, Groppi G, Forzatti P, Kallinen K, Kinnunen T (2013) Enhanced methane conversion under periodic operation over a Pd/Rh based TWC in the exhausts from NGVs. Top Catal 56:372–377

    Article  CAS  Google Scholar 

  22. Wu X, Xu L, Weng D (2004) The thermal stability and catalytic performance of Ce-Zr promoted Rh-Pd/γ-Al2O3 automotive catalysts. Appl Surf Sci 221:375–383

    Article  CAS  Google Scholar 

  23. Vedyagin AA, Volodin AM, Stoyanovskii VO, Mishakov IV, Medvedev DA, Noskov AS (2011) Characterization of active sites of Pd/Al2O3 model catalysts with low Pd content by luminescence, EPR and ethane hydrogenolysis. Appl Catal B 103:397–403

    Article  CAS  Google Scholar 

  24. Medvedev DA, Rybinskaya AA, Kenzhin RM, Volodin AM, Bedilo AF (2012) Characterization of electron donor sites on Al2O3 surface. Phys Chem Chem Phys 14:2587–2598

    Article  CAS  PubMed  Google Scholar 

  25. Vedyagin AA, Volodin AM, Kenzhin RM, Chesnokov VV, Mishakov IV (2016) CO oxidation over Pd/ZrO2 catalysts: role of support’s donor sites. Molecules 21:1289

    Article  CAS  PubMed Central  Google Scholar 

  26. Vedyagin AA, Volodin AM, Kenzhin RM, Stoyanovskii VO, Rogov VA, Kriventsov VV, Mishakov IV (2018) The role of chemisorbed water in formation and stabilization of active sites on Pd/alumina oxidation catalysts. Catal Today 307:102–110

    Article  CAS  Google Scholar 

  27. Stoyanovskii VO, Vedyagin AA, Aleshina GI, Volodin AM, Noskov AS (2009) Characterization of Rh/Al2O3 catalysts after calcination at high temperatures under oxidizing conditions by luminescence spectroscopy and catalytic hydrogenolysis. Appl Catal B 90:141–146

    Article  CAS  Google Scholar 

  28. Plyusnin PE, Makotchenko EV, Shubin YV, Baidina IA, Korolkov IV, Sheludyakova LA, Korenev SV (2015) Synthesis, crystal structures, and characterization of double complex salts [Au(en)2][Rh(NO2)6]·2H2O and [Au(en)2][Rh(NO2)6]. J Mol Struct 1100:174–179

    Article  CAS  Google Scholar 

  29. Vedyagin AA, Volodin AM, Stoyanovskii VO, Kenzhin RM, Slavinskaya EM, Mishakov IV, Plyusnin PE, Shubin YV (2014) Stabilization of active sites in alloyed Pd–Rh catalysts on γ-Al2O3 support. Catal Today 238:80–86

    Article  CAS  Google Scholar 

  30. Netzsch-Gerätebau (2013) NETZSCH proteus thermal analysis. Netzsch-Gerätebau, Selb

    Google Scholar 

  31. Kraus W, Nolze G (2000) POWDERCELL 2.4 program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Federal Institute for Materials Research and Testing, Berlin

    Google Scholar 

  32. Cullity BD (1978) Elements of X-ray diffraction. Addison-Wesley, Reading

    Google Scholar 

  33. Krumm S (1996) An interactive Windows program for profile fitting and size/strain analysis. Mater Sci Forum 228–231:183–190

    Article  Google Scholar 

  34. Vedyagin AA, Gavrilov MS, Volodin AM, Stoyanovskii VO, Slavinskaya EM, Mishakov IV, Shubin YV (2013) Catalytic purification of exhaust gases over Pd-Rh alloy catalysts. Top Catal 56:1008–1014

    Article  CAS  Google Scholar 

  35. Vedyagin AA, Volodin AM, Kenzhin RM, Stoyanovskii VO, Shubin YV, Plyusnin PE, Mishakov IV (2017) Effect of metal-metal and metal-support interaction on activity and stability of Pd Rh/alumina in CO oxidation. Catal Today 293–294:73–81

    Article  CAS  Google Scholar 

  36. Boehm HP, Knözinger H, Anderson JR, Boudart M (1983) Catalysis-science and technology, vol 4. Springer, Berlin

    Google Scholar 

  37. Gao X, Wachs IE (2000) Investigation of surface structures of supported vanadium oxide catalysts by UV–vis–NIR diffuse reflectance spectroscopy. J Phys Chem B 104:1261–1268

    Article  CAS  Google Scholar 

  38. Gaspar AB, Dieguez LC (2000) Dispersion stability and methylcyclopentane hydrogenolysis in Pd/Al2O3 catalysts. Appl Catal A 201:241–251

    Article  CAS  Google Scholar 

  39. Tessier D, Rakai A, Bozon-Verduraz F (1992) Spectroscopic study of the interaction of carbon monoxide with cationic and metallic palladium in palladium–alumina catalysts. J Chem Soc Faraday Trans 88:741–749

    Article  CAS  Google Scholar 

  40. Stoyanovskii VO, Vedyagin AA, Volodin AM, Kenzhin RM, Bespalko YN, Plyusnin PE, Shubin YV (2018) Optical spectroscopy of Rh3+ ions in the lanthanum-aluminum oxide systems. J Lumin 204:609–617

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was financially supported by the Ministry of Education and Science of the Russian Federation within the framework of subsidizing agreement of October 23, 2017 (No. 14.581.21.0028, unique agreement identifier RFMEFI58117X0028) of the Federal Target Program “Research and development in priority directions of the progress of the scientific and technological complex of Russia for the years 2014–2020”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksey A. Vedyagin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 421 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vedyagin, A.A., Shubin, Y.V., Kenzhin, R.M. et al. Prospect of Using Nanoalloys of Partly Miscible Rhodium and Palladium in Three-Way Catalysis. Top Catal 62, 305–314 (2019). https://doi.org/10.1007/s11244-018-1093-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-1093-0

Keywords

Navigation