Skip to main content
Log in

Data-Driven Model for Estimation of Friction Coefficient Via Informatics Methods

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

As technologies progress, the development of new mechanical systems demands the rapid determination of friction coefficients of materials. Data mining and materials informatics methods are used here to generate a predictive model that enables efficient high-throughput screening of ceramic materials, some of which are candidate high-temperature, solid-state lubricants. Through the combination of principal component analysis and recursive partitioning using a small dataset comprised of intrinsic material properties, we develop a decision tree-based model comprised of if-then rules which estimates the friction coefficients of a wide range of materials. This data-driven model has a high degree of accuracy with an R 2 value of 0.8904 and provides a range of possible friction coefficients that accounts for the possible variability of a material’s actual friction coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ludema, K.C.: Mechanism-based modeling of friction and wear. Wear 200, 1–7 (1996)

    Article  CAS  Google Scholar 

  2. Luengo, G., Campbell, S.E., Srdanov, V.I., Wudl, F., Israelachvili, J.N.: Direct measurement of the adhesion and friction of smooth C60 surfaces. Chem. Mater. 9, 1166–1171 (1997)

    Article  CAS  Google Scholar 

  3. Maeda, N., Chen, N.H., Tirrell, M., Israelachvili, J.N.: Adhesion and friction mechanisms of polymer-on-polymer surfaces. Science 297, 379–382 (2002)

    Article  CAS  Google Scholar 

  4. Johnson, K.L.: The contribution of micro/nano-tribology to the interpretation of dry friction. Proc. Inst. Mech. Eng. C 214, 11–22 (2000)

    Article  Google Scholar 

  5. Kopta, S., Salmeron, M.: The atomic scale origin of wear on mica and its contribution to friction. J. Chem. Phys. 113, 8249–8252 (2000)

    Article  CAS  Google Scholar 

  6. van den Oetelaar, R.J.A., Flipse, C.F.J.: Atomic-scale friction on diamond(111) studied by ultra-high vacuum atomic force microscopy. Surf. Sci. 384, L828–L835 (1997)

    Article  Google Scholar 

  7. Zhao, X.Y., Perry, S.S.: Temperature-dependent atomic scale friction and wear on PbS(100). Tribol. Lett. 39, 169–175 (2010)

    Article  CAS  Google Scholar 

  8. Sanchez-Lopez, J.C., Donnet, C., Loubet, J.L., Belin, M., Grill, A., Patel, V., Jahnes, C.: Tribological and mechanical properties of diamond-like carbon prepared by high-density plasma. Diam. Relat. Mater. 10, 1063–1069 (2001)

    Article  CAS  Google Scholar 

  9. Polcar, T., Novak, R., Siroky, P.: The tribological characteristics of TiCN coating at elevated temperatures. Wear 260, 40–49 (2006)

    Article  CAS  Google Scholar 

  10. Burris, D.L., Perry, S.S., Sawyer, W.G.: Macroscopic evidence of thermally activated friction with polytetrafluoroethylene. Tribol. Lett. 27, 323–328 (2007)

    Article  CAS  Google Scholar 

  11. Barry, P.R., Chiu, P.Y., Perry, S.S., Sawyer, W.G., Phillpot, S.R., Sinnott, S.B.: The effect of normal load on polytetrafluoroethylene tribology. J. Phys. Condens. Matter 21, 144201 (2009)

    Article  Google Scholar 

  12. Schall, J.D., Gao, G.T., Harrison, J.A.: Effects of adhesion and transfer film formation on the tribology of self-mated DLC contacts. J. Phys. Chem. C 114, 5321–5330 (2010)

    Article  CAS  Google Scholar 

  13. Pastewka, L., Moser, S., Moseler, M.: Atomistic insights into the running-in, lubrication, and failure of hydrogenated diamond-like carbon coatings. Tribol. Lett. 39, 49–61 (2010)

    Article  CAS  Google Scholar 

  14. Zhong, W., Tomanek, D.: First-principles theory of atomic-scale friction. Phys. Rev. Lett. 64, 3054–3057 (1990)

    Article  CAS  Google Scholar 

  15. Liang, T., Sawyer, W.G., Perry, S.S., Sinnott, S.B., Phillpot, S.R.: First-principles determination of static potential energy surfaces for atomic friction in MoS2 and MoO3. Phys. Rev. B 77, 104105 (2008)

    Article  Google Scholar 

  16. Ferris, K.F., Peurrung, L.M., Marder, J.: Materials informatics: fast track to new materials. Adv. Mater. Process. 165, 50–51 (2007)

    Google Scholar 

  17. Gang, Y., Jingzhong, C., Li, Z.: Data mining techniques for materials informatics: datasets preparing and applications. In: Zhao, C., Wu, Y., Wang, J., Liu, Q. (eds.) Proceedings of the 2009 Second International Symposium on Knowledge Acquisition and Modeling, vol. 2, pp. 189–192. Wuhan, China, Nov 30–Dec 1 (2009)

  18. Nowers, J.R., Broderick, S.R., Rajan, K., Narasimhan, B.: Combinatorial methods and informatics provide insight into physical properties and structure relationships during IPN formation. Macromol. Rapid Commun. 28, 972–976 (2007)

    Article  CAS  Google Scholar 

  19. George, L., Hrubiak, R., Rajan, K., Saxena, S.K.: Principal component analysis on properties of binary and ternary hydrides and a comparison of metal versus metal hydride properties. J. Alloy. Compd. 478, 731–735 (2009)

    Article  CAS  Google Scholar 

  20. Hautier, G., Fischer, C., Ehrlacher, V., Jain, A., Ceder, G.: Data mined ionic substitutions for the discovery of new compounds. Inorg. Chem. 50, 656–663 (2011)

    Article  CAS  Google Scholar 

  21. Erdemir, A.: A crystal-chemical approach to lubrication by solid oxides. Tribol. Lett. 8, 97–102 (2000)

    Article  CAS  Google Scholar 

  22. Erdemir, A., Li, S.H., Jin, Y.S.: Relation of certain quantum chemical parameters to lubrication behavior of solid oxides. Int. J. Mol. Sci. 6, 203–218 (2005)

    Article  CAS  Google Scholar 

  23. Callister, W.D.: Materials Science and Engineering: An Introduction, 6th edn. Wiley, New York (2003)

    Google Scholar 

  24. Gale, J.D., Rohl, A.L.: The general utility lattice program (GULP). Mol. Simul. 29, 291–341 (2003)

    Article  CAS  Google Scholar 

  25. Glasser, L.: Solid-state energetics and electrostatics: Madelung constants and Madelung energies. Inorg. Chem. (2012). doi:10.1021/ic2023852

    Google Scholar 

  26. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer, New York (2002)

    Google Scholar 

  27. Chong, I.G., Jun, C.H.: Performance of some variable selection methods when multicollinearity is present. Chemom. Intell. Lab. Syst. 78, 103–112 (2005)

    Article  CAS  Google Scholar 

  28. Refaeilzadeh, P., Tang, L., Liu, H.: Cross-validation. In: Liu, L., Ozsu, M.T. (eds.) Encyclopedia of Database Systems, pp. 532–538. Springer, New York (2009)

    Google Scholar 

  29. Ohmae, N.: Humidity effects on tribology of advanced carbon materials. Tribol. Int. 39, 1497–1502 (2006)

    Article  CAS  Google Scholar 

  30. Horn, H.M., Deere, D.U.: Frictional characteristics of minerals. Geotechnique 12, 319–335 (1962)

    Article  Google Scholar 

  31. Moore, D.E., Lockner, D.A.: Crystallographic controls on the frictional behavior of dry and water-saturated sheet structure minerals. J. Geophys. Res. 109, B03401 (2004)

    Article  Google Scholar 

  32. Miyoshi, K.: Solid lubricants and coatings for extreme environments: state-of-the-art survey. Tech. Memo. NASA/TM, 214668 (2007)

  33. Zhao, X.Y., Phillpot, S.R., Sawyer, W.G., Sinnott, S.B., Perry, S.S.: Transition from thermal to athermal friction under cryogenic conditions. Phys. Rev. Lett. 102, 186102 (2009)

    Article  Google Scholar 

  34. Woydt, M., Habig, K.H.: High temperature tribology of ceramics. Tribol. Int. 22, 75–88 (1989)

    Article  CAS  Google Scholar 

  35. Physical and optical properties of minerals. In: Haynes, W.M. (ed.) CRC Handbook of Chemistry and Physics, pp. 4–144. CRC Press/Taylor and Francis, Boca Raton (2011)

  36. Gersten, J.I., Smith, F.W.: The Physics and Chemistry of Materials. Wiley, New York (2001)

    Google Scholar 

  37. Goto, M., Kasahara, A., Tosa, M.: Low frictional property of copper oxide thin films optimised using a combinatorial sputter coating system. Appl. Surf. Sci. 252, 2482–2487 (2006)

    Article  CAS  Google Scholar 

  38. Anthony, J.W., Bideaux, R.A., Bladh, K.W., Nichols, M.C.: Handbook of Mineralogy, Vol. 3: Halides, Hydroxides, Oxides. Mineral Data Publishing, Tucson (1997)

    Google Scholar 

  39. Ralph, J., Chau, I.: Molybdite. http://www.mindat.org/min-2748.html (2011). Accessed 23 January 2012

  40. Ralph, J., Chau, I.: Shcherbinaite. http://www.mindat.org/min-3636.html (2011). Accessed 23 January 2012

  41. Prasad, S.V., McDevitt, N.T., Zabinski, J.S.: Tribology of tungsten disulfide films in humid environments: the role of a tailored metal-matrix composite substrate. Wear 230, 24–34 (1999)

    Article  CAS  Google Scholar 

  42. Anthony, J.W., Bideaux, R.A., Bladh, K.W., Nichols, M.C.: Handbook of Mineralogy, Vol. I: Elements, Sulfides. Sulfosalts. Mineral Data Publishing, Tucson (1990)

    Google Scholar 

  43. Kubart, T., Polcar, T., Kopecky, L., Novak, R., Novakova, D.: Temperature dependence of tribological properties of MoS2 and MoSe2 coatings. Surf. Coat. Technol. 193, 230–233 (2005)

    Article  CAS  Google Scholar 

  44. Ralph, J., Chau, I.: Drysdallite. http://www.mindat.org/min-1322.html (2011). Accessed 23 January 2012

  45. Erdemir, A.: Crystal chemistry and solid lubricating properties of the monochalcogenides gallium selenide and tin selenide. Tribol. Trans. 37, 471–478 (1994)

    Article  CAS  Google Scholar 

  46. Gurzadyan, G., Tzankov, P.: Dielectrics and Electrooptics. In: Martienssen, W., Warlimont, H. (eds.) Springer Handbook of Condensed Matter and Materials Data, pp. 817–901. Springer, Berlin (2005)

    Chapter  Google Scholar 

  47. Ralph, J., Chau, I.: Freboldite. http://www.mindat.org/min-1602.html (2011). Accessed 23 January 2012

  48. Lewis, R.J.: Sax’s Dangerous Properties of Industrial Materials, vol. 3, 11th ed. Wiley, Hoboken (2004)

  49. Physical constants of inorganic compounds. In: Haynes, W.M. (ed.) CRC Handbook of Chemistry and Physics, pp. 4-43–101. CRC Press/Taylor and Francis, Boca Raton (2011)

  50. Aylward, G.H., Findlay, T.J.V.: SI Chemical Data. Wiley, New York (1971)

    Google Scholar 

  51. Properties of semiconductors. In: Haynes, W.M. (ed.) CRC Handbook of Chemistry and Physics, pp. 12-80–93. CRC Press/Taylor and Francis, Boca Raton, FL (2011)

  52. Dierks, S.: Nickel telluride: Material safety data sheet. http://www.espimetals.com/index.php/msds/696-nickel-telluride (1999). Accessed 23 January 2012

  53. Makovetskii, G.I., Vas’kov, D.G., Yanushkevich, K.I.: Structure, density, and microhardness of Co1–x Ni x Te (0 < x < 1) solid solutions. Inorg. Mater. 38, 108–110 (2002)

    Article  CAS  Google Scholar 

  54. Hikichi, Y., Ota, T., Daimon, K., Hattori, T., Mizuno, M.: Thermal, mechanical, and chemical properties of sintered xenotime-type RPO4 (R=Y, Er, Yb, or Lu). J. Am. Ceram. Soc. 81, 2216–2218 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors EWB, KRM, WGS, SRP, and SBS gratefully acknowledge the support of the Office of Naval Research under grant number N000141010165. CSK and KR acknowledge the support from the NSF-ARI Program under grant number CMMI 09-389018 and the Army Research Office under grant number W911NF-10-0397. KR acknowledges the support from the Wilkinson Professorship of Interdisciplinary Engineering. The authors also thank Jonathan Liddy, former undergraduate student from the University of Florida, for his role in the compilation of the properties from the literature used for the material dataset in this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Susan B. Sinnott or Krishna Rajan.

Appendix

Appendix

See Table 2.

Table 2 Material dataset with 16 properties and 38 materials used to develop predictive model for friction coefficient

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bucholz, E.W., Kong, C.S., Marchman, K.R. et al. Data-Driven Model for Estimation of Friction Coefficient Via Informatics Methods. Tribol Lett 47, 211–221 (2012). https://doi.org/10.1007/s11249-012-9975-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-012-9975-y

Keywords

Navigation