Skip to main content

Advertisement

Log in

Productivity-efficiency tradeoffs in tropical gallery forest-savanna transitions: linking plant and soil processes through litter input and composition

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Vegetation gradients in Central Brazil encompass sharp transitions from savanna to forests, representing an iconic example of how interactions between plants and soils regulate biogeographical boundaries. Here we describe how canopy productivity regulates nutrient inputs to soils, affecting fertility and influencing ecosystem distribution. Based on soil and litter systematically collected during 12 months along a gallery forest-savanna transition, we determined associations between canopy cover (leaf area index—LAI) and the (re)cycling of essential macronutrients. This evaluation was aimed at aggregating information about biogeochemical controls of ecosystem distribution/productivity, to support conservation and management efforts in the region. We confirmed two hypotheses: (i) nutrient inputs via litterfall are significantly higher in forest than in adjacent savanna, and (ii) litter quality varies with canopy productivity and litter nutrient concentrations influence soil fertility reinforcing forest and savanna as alternate stable states. These observations delineate a productivity-efficiency tradeoff in which savannas communities are more efficient in the use of limiting nutrients, yet, less productive than forest communities. The relative importance of different nutrients, apparent on recovery rates in the litter regressed against LAI, revealed that the expansion of forest ecosystems is limited by P > Mg > K > N, with highest conservation observed for P. Differences in Ca input were also significant among ecosystems, but depended solely on the amount of deposited litter, with no differences in recovery rates observed between forests and savannas. A tradeoff-based framework could be used to predict ecotonal stability in the region, with transitions between savannas and forests marked by clear changes in species composition, productivity, litter deposition, and soil fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdala GC, Caldas LS, Haridasan M, Eiten G (1998) Above and belowground organic matter and root: shoot ratio in a cerrado in Central Brazil. Braz J Ecol 2:11–23

    Google Scholar 

  • Allen SE (1989) Chemical analysis of ecological materials. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Bond WJ, Woodward FI, Midgley GF (2004) The global distribution of ecosystems in a world without fire. New Phytol 165:525–538

    Article  Google Scholar 

  • Brady NC, Weil RR (2007) The nature and properties of soils, 14th edn. Prentice Hall, New Jersey

    Google Scholar 

  • Bremner JM, Mulvaney CS (1982) Nitrogen total. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis: chemical and microbiological properties, 2nd edn. American Society of Agronomy, Madison, pp 595–624

    Google Scholar 

  • Cianciaruso MV, Pires JSR, Delitti WBC, Silva EFLP (2006) Produção de serapilheira e decomposição do material foliar em um cerradão na Estação Ecológica de Jataí, município de Luiz Antônio, SP, Brasil. Acta Bot Bras 20:49–59

    Article  Google Scholar 

  • Coutinho L (2006) O conceito de Bioma. Acta Bot Bras 20:13–23

    Article  Google Scholar 

  • Dahlgren RA, Horwath WR, Tate KW, Camping TJ (2003) Blue oak enhance soil quality in California oak woodlands. Calif Agric 57:42–47

    Article  Google Scholar 

  • Dias HCT, Oliveira-Filho AT (1997) Variação temporal e espacial da produção de serapilheira em uma área de Floresta Estacional Semidecídua Montana em Lavras, MG. Rev Arvore 21:11–26

    Google Scholar 

  • Durigan G, Ratter JA (2006) Successional changes in cerrado and cerrado/forest ecotonal vegetation in western São Paulo state, Brazil, 1962–2000. Edinb J Bot 63:119–130

    Article  Google Scholar 

  • Eiten G (1994) Vegetação do Cerrado. In: Pinto MN (ed) Cerrado: caracterização, ocupação e perspectivas. UnB/SEMATEC, Brasília, pp 17–73

    Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harlope WS, Hillebrand H et al (2007) Global analysis of nitrogen and phosphorous limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1–8

    Article  Google Scholar 

  • Felfili JM, Silva-Júnior MC, Sevilha AC, Fagg CW, Walter BMT, Nogueira PE, Rezende AV (2004) Diversity, floristic and structural patterns of cerrado vegetation in Central Brazil. Plant Ecol 175:37–46

    Article  Google Scholar 

  • Franco AC, Bustamante M, Caldas LS, Goldstein G, Meinzer FC, Kozovits AR, Rundel P, Coradin VTR (2005) Leaf functional traits of Neotropical savanna trees in relation to seasonal water deficit. Trees Struct Funct 19:326–335

    Article  Google Scholar 

  • Franco AC, Rossatto DR, Silva LCR, Ferreira CS (2014) Cerrado vegetation and global change: the role of functional types, resource availability and disturbance in regulating plant community responses to rising CO2 levels and climate warming. Theor Exp Plant Physiol 26:19–38

    Article  Google Scholar 

  • Furley PA (1992) Edaphic changes at the forest-savanna boundary with particular reference to the neotropics. In: Furley PA, Proctor J, Ratter JA (eds) Nature and dynamics of forest-savanna boundaries. Chapman and Hall, London, pp 91–117

    Google Scholar 

  • Furley PA (1999) The nature and diversity of neotropical savanna vegetation. Glob Ecol Biogeogr 8:223–241

    Article  Google Scholar 

  • Furley PA (2007) Tropical savannas and associated forests: vegetation and plant ecology. Prog Phy Geogr 31:203–211

    Article  Google Scholar 

  • Geiger EL, Gotsch SG, Vale GD, Haridasan M, Franco AC, Hoffmann WA (2011) Distinct roles of savanna and forest tree species in regeneration following fire suppression in a Brazilian savanna. J Veg Sci 22:312–321

    Article  Google Scholar 

  • Haridasan M (1998) Solos de mata de galeria e nutrição mineral de espécies arbóreas em condições naturais. In: Ribeiro JF (ed) Cerrado: caracterização e recuperação de matas de galeria. EMBRAPA Cerrados, Planaltina, pp 19–28

    Google Scholar 

  • Haridasan M (2008) Nutritional adaptations of native plants of the cerrado biome in acid soils. Braz J Plant Physiol 20:183–195

    Article  Google Scholar 

  • Hoffmann WA, Orthen B, Nascimento PKV (2003) Comparative fire ecology of tropical savanna and forest trees. Funct Ecol 17:720–726

    Article  Google Scholar 

  • Hoffmann WA, Silva-Júnior ER, Machado GC, Bucci SJ, Scholz FG, Goldstein G, Meinzer FC (2005) Seasonal leaf dynamics across a tree density gradient in a Brazilian savanna. Oecologia 145:307–316

    Article  PubMed  Google Scholar 

  • Hoffmann WA, Adasme R, Haridasan M, Carvalho M, Geiger EL, Pereira MAB, Gotsch SG, Franco AC (2009) Tree topkill, not mortality, governs the dynamics of alternate stable states at savanna-forest boundaries under frequent fire in Central Brazil. Ecology 90:1326–1337

    Article  PubMed  Google Scholar 

  • Hoffmann WA, Geiger LG, Gotsch SG, Rossatto R, Silva LCR, Lau OL, Haridasan M, Franco AC (2012) Ecological thresholds at the savanna-forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes. Ecol Lett 15:759–768

    Article  PubMed  Google Scholar 

  • Hopkins B (1992) Ecological processes at the forest-savanna boundary. In: Furley PA, Proctor J, Ratter JA (eds) Nature and dynamics of forest-savanna boundaries. Chapman and Hall, London, pp 21–33

    Google Scholar 

  • Hora RC, Primavesi O, Soares JJ (2008) Contribuição das folhas de lianas na produção de serapilheira em um fragmento de floresta estacional semidecidual em São Carlos, SP. Rev Bras Bot 31:277–285

    Article  Google Scholar 

  • Kazakou E, Garnier E, Navas ML, Roumet C, Colin C, Laurent G (2007) Components of nutrient residence time and the leaf economics spectrum in species from Mediterranean old-fields differing in successional status. Funct Ecol 21:235–245

    Article  Google Scholar 

  • König FG, Brun EJ, Schumacher MV, Longhi SJ (2002) Devolução de nutrientes via serapilheira em um fragmento de Floresta Estacional Decidual no município de Santa Maria, RS. Bras Florest 74:45–52

    Google Scholar 

  • Kozovits AR, Bustamante MMC, Garofalo CR, Bucci S, Franco AC, Goldstein G et al (2007) Nutrient resorption and patterns of litter production and decomposition in a Neotropical Savanna. Funct Ecol 21:1034–1044

    Article  Google Scholar 

  • Lambers H, Chapin FS, Pons TL (1998) Plant physiological ecology, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Lehmann CER, Archibald SA, Hoffmann WA, Bond WJ (2011) Deciphering the distribution of the savanna biome. New Phytol 191:197–209

    Article  PubMed  Google Scholar 

  • Marimon-Júnior BH (2007) Relação entre diversidade arbórea e aspectos do ciclo biogeoquímico de uma floresta mondominante de Brosimum rubescens Taub. e uma floresta mista no leste mato-grossense. Thesis, University of Brasilia

  • Mehlich A (1953) Determination of P, Ca, Mg, K, Na and NH4. North Carolina Department of Agriculture, Raleigh

  • Nardoto GB, Bustamante MMC, Pinto AS, Klink CA (2006) Nutrient use efficiency at ecosystem and species level in savanna areas of Central Brazil and impacts of fire. J Trop Ecol 22:191–201

    Article  Google Scholar 

  • Pagano SN, Durigan G (2000) Aspectos da ciclagem de nutrientes em Matas Ciliares do oeste do Estado de São Paulo, Brasil. In: Rodrigues RR, Leitão-Filho HF (eds) Matas Ciliares: conservação e recuperação. Editora da USP/FAPESP, São Paulo, pp 109–123

    Google Scholar 

  • Parron LM (2004) Aspectos da ciclagem de nutrientes em função do gradiente topográfico em uma mata de galeria no Distrito Federal. Thesis, University of Brasilia

  • Parron LM, Bustamante MMC, Markewitz D (2010) Fluxes of nitrogen and phosphorus in a gallery forest in the Cerrado of central Brazil. Biogeochemistry 105:89–104

    Article  Google Scholar 

  • Peres JRR, Suhet AR, Vargas MAT, Drozdowicz A (1983) Litter production in areas of Brazilian ‘Cerrados’. Pesq Agropecu Bras 18:1037–1043

    Google Scholar 

  • Ratter JA (1992) Transitions between cerrado and forest vegetation in Brazil. In: Furley PA, Proctor J, Ratter JA (eds) Nature and dynamics of forest-savanna boundaries. Chapman and Hall, London, pp 417–430

    Google Scholar 

  • Ribeiro JF, Walter BMT (2008) As principais fitofisionomias do Bioma Cerrado. In: Sano SM, Almeida SP, Ribeiro JF (eds) Cerrado: ambiente e flora. EMBRAPA Cerrados, Planaltina, pp 151–212

    Google Scholar 

  • Rossatto DR, Hoffmann WA, Franco AC (2009) Differences in growth patterns between co-occurring forest and savanna trees affect the forest savanna boundary. Funct Ecol 23:689–698

    Article  Google Scholar 

  • Rossatto DR, Silva LCR, Villalobos-Vega R, Sternberg LSL, Franco AC (2012) Depth of water uptake in woody plants relates to groundwater level and vegetation structure along a topographic gradient in a neotropical savanna. Environ Exp Bot 77:259–266

    Article  Google Scholar 

  • Rossatto DR, Silva LCR, Sternberg LSL, Franco AC (2014) Do woody and herbaceous species compete for soil water across topographic gradients? Evidence for niche partitioning in a Neotropical savanna. S Afr J Bot 91:14–18

    Article  Google Scholar 

  • Ruggiero PGC, Pivello VR, Sparovek G, Teramoto E, Pires-Neto AG (2006) Relação entre solo, vegetação e topografia em área de cerrado (Parque Estadual de Vassununga, SP): como se expressa em mapeamentos? Acta Bot Bras 20:383–394

    Article  Google Scholar 

  • SAS Institute (2012) JMP version 10. SAS Institute, Cary, North Carolina, USA

  • Schiavini I (1983) Alguns aspectos da ciclagem de nutrientes em uma área de cerrado (Brasília, DF): chuva, produção e decomposição de liter. Dissertation, University of Brasilia

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611. doi:10.1093/biomet/52.3-4.591

    Article  Google Scholar 

  • Silva MRSS (2004) Produção de serapilheira, biomassa e diversidade de comunidades bacterianas do solo em áreas de Cerrado sob diferentes usos e manejos. Dissertation, Universidade de Brasília

  • Silva LCR (2014) The importance of climate-driven forest-savanna biome shifts in anthropological and ecological research. Proc Natl Acad Sci 111:3831–3832

    Article  Google Scholar 

  • Silva LCR, Anand M (2011) Mechanisms of Araucaria (Atlantic) forest expansion into Southern Brazilian grasslands. Ecosystems 14:1354–1371

    Article  CAS  Google Scholar 

  • Silva LCR, Anand M (2013) Historical links and new fronteirs in the study of forest-atmosphere interactions. Community Ecol 14:208–218

    Article  Google Scholar 

  • Silva CJ, Sanches L, Bleich ME, Lobo FA, Nogueira JS (2007) Produção de serapilheira no Cerrado e Floresta de Transição Amazônia-Cerrado do Centro-Oeste Brasileiro. Acta Amaz 37:543–548

    Article  Google Scholar 

  • Silva LCR, Sternberg LSL, Haridasan M, Hoffmann WA, Miralles-Wilhelm F, Franco AC (2008) Expansion of gallery forests into central Brazilian savannas. Glob Change Biol 14:1–11

    Article  Google Scholar 

  • Silva LCR, Haridasan M, Sternberg LSL, Franco AC, Hoffmann WA (2010) Not all forests are expanding over central Brazilian savannas. Plant Soil 333:431–442

    Article  CAS  Google Scholar 

  • Silva LCR, Hoffmann WA, Rossatto DR, Haridasan M, Franco AC, Horwath WR (2013) Can savannas become forests? A coupled analysis of nutrient stocks and fire thresholds in central Brazil. Plant Soil 373:829–842

    Article  CAS  Google Scholar 

  • Vergutz L, Manzoni S, Porporato A, Novais RF, Jackson RB (2012) Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol Monogr 82:205–220

    Article  Google Scholar 

  • Villalobos-Vega R, Goldstein G, Haridasan M, Franco AC, Miralles-Wilhelm F, Scholz FG, Bucci SJ (2011) Leaf litter manipulations alter soil physicochemical properties and tree growth in a Neotropical savanna. Plant Soil 346:385–397

    Article  CAS  Google Scholar 

  • Vitousek PM (2004) Nutrient cycling and limitation: Hawai’i as a model system. Princeton University Press, Oxford

    Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid tritation method. Soil Sci 37:29–38

    Article  CAS  Google Scholar 

  • Walter BMT, Carvalho AM, Ribeiro JF (2008) O conceito de savana e seu componente cerrado. In: Sano SM, Almeida SP, Ribeiro JF (eds) Cerrado: ambiente e flora. EMBRAPA Cerrados, Planaltina, pp 19–45

    Google Scholar 

  • Werneck MS, Pedralli G, Gieseke LF (2001) Produção de serapilheira em três trechos de uma floresta semidecídua com diferentes graus de perturbação na Estação Ecológica do Tripuí, Ouro Preto, MG. Rev Bras Bot 24:195–198

    Article  Google Scholar 

Download references

Acknowledgments

We thank the staff of IBGE Ecological Reserve for infrastructure and logistical support. We also thank William Horwath for valuable discussion, William Hoffmann, Augusto Franco, Erika Geiger, Sybil Gotsh, and many other colleagues who helped with data collection, and Mara Rúbia Suzana Chaves who helped with laboratory analysis. This research was supported by CAPES Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Orelli Paiva.

Additional information

Communicated by Erik P Hamerlynck.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 194 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paiva, A.O., Silva, L.C.R. & Haridasan, M. Productivity-efficiency tradeoffs in tropical gallery forest-savanna transitions: linking plant and soil processes through litter input and composition. Plant Ecol 216, 775–787 (2015). https://doi.org/10.1007/s11258-015-0466-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-015-0466-8

Keywords

Navigation