Skip to main content
Log in

A Fully Implantable, Programmable and Multimodal Neuroprocessor for Wireless, Cortically Controlled Brain-Machine Interface Applications

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

Reliability, scalability and clinical viability are of utmost importance in the design of wireless Brain Machine Interface systems (BMIs). This paper reports on the design and implementation of a neuroprocessor for conditioning raw extracellular neural signals recorded through microelectrode arrays chronically implanted in the brain of awake behaving rats. The neuroprocessor design exploits a sparse representation of the neural signals to combat the limited wireless telemetry bandwidth. We demonstrate a multimodal processing capability (monitoring, compression, and spike sorting) inherent in the neuroprocessor to support a wide range of scenarios in real experimental conditions. A wireless transmission link with rate-dependent compression strategy is shown to preserve information fidelity in the neural data. The optimal design for compression and sorting performance was evaluated for multiple sampling frequencies, wavelet basis choice and power consumption. At 32 channels, the neuroprocessor has been fully implemented on a 5 mm × 5 mm nano-FPGA, and the prototyping resulted in 5.19 mW power consumption, bringing its performance within the power-size constraints for clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Serruya, M. D., Hatsopoulos, N. G., Paninski, L., Fellows, M. R., & Donoghue, J. P. (2002). Brain-machine interface: instant neural control of a movement signal. Nature, 416, 141–142.

    Article  Google Scholar 

  2. Taylor, D. M., Helms Tillery, S. I., & Schwartz, A. B. (2002). Direct cortical control of 3D neuroprosthetic devices. Science, 296, 1829–1832.

    Article  Google Scholar 

  3. Oweiss, K. G., Mason, A., Suhail, Y., Kamboh, A. M., & Thomson, K. E. (2007). A scalable wavelet transform VLSI architecture for real-time signal processing in high-density intra-cortical implants. IEEE Transactions on Circuits and Systems I: Regular Papers, 54, 1266–1278.

    Article  Google Scholar 

  4. Zhang, F., Asgarian, F., Aghagolzadeh, M., Kiani, M., Ghovanloo, M., Oweiss, K. G. iWIMNIS A: a fully implantable wireless intracortical multichannel neural interface system for neural recording in freely behaving subjects. in preparation.

  5. Gao, H., Walker, R. M., Nuyujukian, P., Makinwa, K. A. A., Shenoy, K. V., Murmann, B., Meng, T. H. (2011) HermesE: A 96-channel full data rate direct neural interface in 0.13 um CMOS. IEEE Journal of Solid State Circuits, in press.

  6. Du, J., Blanche, T. J., Harrison, R. R., Lester, H. A., Masmanidis, S. C. (2011) Multiplexed, High Density Electrophysiology with Nanofabricated Neural Probes. PLoS ONE 6(10): e26204. doi:10.1371/journal.pone.0026204.

  7. Rizk, M., Obeid, I., Callender, S. H., & Wolf, P. D. (2007). A single-chip signal processing and telemetry engine for an implantable 96-channel neural data acquisition system. Journal of Neural Engineering, 4, 309.

    Article  Google Scholar 

  8. Harrison, R. R., Watkins, P. T., Kier, R. J., Lovejoy, R. O., Black, D. J., Greger, B., & Solzbacher, F. (2007). A low-power integrated circuit for a wireless 100-electrode neural recording system. IEEE Journal of Solid-State Circuits, 42, 123–133.

    Article  Google Scholar 

  9. Perelman, Y., & Ginosar, R. (2007). An integrated system for multichannel neuronal recording with spike/LFP separation, integrated A/D conversion and threshold detection. IEEE Transactions on Biomedical Engineering, 54, 130–137.

    Article  Google Scholar 

  10. Obeid, I. (2004). A wireless multichannel neural recording platform for real time brain machine interface. Ph.D Thesis. Durham: Duke University.

  11. Moo Sung, C., Zhi, Y., Yuce, M. R., Linh, H., & Liu, W. (2009). A 128-channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17, 312–321.

    Article  Google Scholar 

  12. Lee, S. B., Lee, M. H., Kiani, M., Uei-Ming, J., & Ghovanloo, M. (2010). An inductively powered scalable 32-channel wireless neural recording system-on-a-chip for neuroscience applications. IEEE Transactions on Biomedical Circuits and Systems, 4, 360–371.

    Article  Google Scholar 

  13. Miranda, H., Gilja, V., Chestek, C. A., Shenoy, K. V., & Meng, T. H. (2010). HermesD: A high-rate long-range wireless transmission system for simultaneous multichannel neural recording applications. IEEE Transactions on Biomedical Circuits and Systems, 4, 181–191.

    Article  Google Scholar 

  14. Yeager, D. J., Holleman, J., Prasad, R., Smith, J. R., & Otis, B. P. (2009). NeuralWISP: a wirelessly powered neural interface with 1-m range. IEEE Transactions on Biomedical Circuits and Systems, 3, 379–387.

    Article  Google Scholar 

  15. Song, Y. K., Borton, D. A., Park, S., Patterson, W. R., Bull, C. W., Laiwalla, F., Mislow, J., Simeral, J. D., Donoghue, J. P., & Nurmikko, A. V. (2009). Active microelectronic neurosensor arrays for implantable brain communication interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17, 339–345.

    Article  Google Scholar 

  16. Sodagar, A. M., Wise, K. D., & Najafi, K. (2009). A wireless implantable microsystem for multichannel neural recording. IEEE Transactions on Microwave Theory and Techniques, 57, 2565–2573.

    Article  Google Scholar 

  17. Sodagar, A. M., Perlin, G. E., Ying, Y., Najafi, K., & Wise, K. D. (2009). An implantable 64-channel wireless microsystem for single-unit neural recording. IEEE Journal of Solid-State Circuits, 44, 2591–2604.

    Article  Google Scholar 

  18. Ming, Y., & Ghovanloo, M. (2009). A flexible clockless 32-ch simultaneous wireless neural recording system with adjustable resolution. In IEEE International Solid-State Circuits Conference, pp. 432–433.

  19. Harrison, R. R., Kier, R. J., Chestek, C. A., Gilja, V., Nuyujukian, P., Ryu, S., Greger, B., Solzbacher, F., & Shenoy, K. V. (2009). Wireless neural recording with single low-power integrated circuit. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17, 322–329.

    Article  Google Scholar 

  20. Gosselin, B., & Sawan, M. (2009). An ultra low-power CMOS automatic action potential detector. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17, 346–353.

    Article  Google Scholar 

  21. Chestek, C. A., Gilja, V., Nuyujukian, P., Kier, R. J., Solzbacher, F., Ryu, S. I., Harrison, R. R., & Shenoy, K. V. (2009). HermesC: low-power wireless neural recording system for freely moving primates. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17, 330–338.

    Article  Google Scholar 

  22. Harris, J. G., Principe, J. C., Sanchez, J. C., Du, C., & She, C. (2008) Pulse-based signal compression for implanted neural recording systems. In IEEE International Symposium on Circuits and Systems, ISCAS 2008. pp. 344–347.

  23. Sodagar, A. M., Wise, K. D., & Najafi, K. (2007). A fully integrated mixed-signal neural processor for implantable multichannel cortical recording. IEEE Transactions on Biomedical Engineering, 54, 1075–1088.

    Article  Google Scholar 

  24. Santhanam, G., Linderman, M. D., Gilja, V., Afshar, A., Ryu, S. I., Meng, T., & Shenoy, K. (2007). HermesB: a continuous neural recording system for freely behaving primates. IEEE Transactions on Biomedical Engineering, 54, 2037–2050.

    Article  Google Scholar 

  25. Gosselin, B. A., Ayoub, E., & Sawan, M. (2007). A mixed-signal multi-chip neural recording interface with bandwidth reduction. In IEEE Biomedical Circuits and Systems Conference. pp. 49–52.

  26. Song, Y. K., Patterson, W. R., Bull, C. W., Beals, J., Hwang, N., Deangelis, A. P., Lay, C., McKay, J. L., Nurmikko, A. V., Fellows, M. R., Simeral, J. D., Donoghue, J. P., & Connors, B. W. (2005). Development of a chipscale integrated microelectrode/microelectronic device for brain implantable neuroengineering applications. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 13, 220–226.

    Article  Google Scholar 

  27. Liu, W., Sivaprakasam, M., Wang, G., Zhou, M., Granacki, J., Lacoss, J., & Wills, J. (2005). Implantable biomimetic microelectronic systems design. IEEE Engineering in Medicine and Biology Magazine, 24, 66–74.

    Google Scholar 

  28. Olsson, R., & Wise, K. (2005). A three-dimensional neural recording microsystem with implantable data compression circuitry. In 2005 IEEE International Solid-State Circuits Conference. pp. 558–559.

  29. Mohseni, P., Najafi, K., Eliades, S. J., & Wang, X. (2005). Wireless multichannel biopotential recording using an integrated FM telemetry circuit. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 13, 263–271.

    Article  Google Scholar 

  30. Patterson, W. R., Yoon-Kyu, S., Bull, C. W., Ozden, I., Deangellis, A. P., Lay, C., McKay, J. L., Nurmikko, A. V., Donoghue, J. D., & Connors, B. W. (2004). A microelectrode/microelectronic hybrid device for brain implantable neuroprosthesis applications. IEEE Transactions on Biomedical Engineering, 51, 1845–1853.

    Article  Google Scholar 

  31. Hochberg, L. R., Serruya, M. D., Friehs, G. M., Mukand, J. A., Saleh, M., Caplan, A. H., Branner, A., Chen, D., Penn, R. D., & Donoghue, J. P. (2006). Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature, 442, 164–171.

    Article  Google Scholar 

  32. Aghagolzadeh, M., & Oweiss, K. (2009). Compressed and distributed sensing of neuronal activity for real time spike train decoding. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17, 116–127.

    Article  Google Scholar 

  33. Oweiss, K. G. (2010). Statistical signal processing for neuroscience and neurotechnology. Academic Press, Elsevier. pp. 15–74.

  34. Kiani, M., & Ghovanloo, M. (2010). An RFID-based closed-loop wireless power transmission system for biomedical applications. IEEE Transactions on Circuits and Systems II: Express Briefs, 57, 260–264.

    Article  Google Scholar 

  35. Kiani, M., Kwon, K. Y., Zhang, F., Oweiss, K., & Ghovanloo, M. (2011). Evaluation of a closed loop inductive power transmission system on an awake behaving animal subject. In the 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

  36. http://www.actel.com/documents/IGLOO_nano_DS.pdf.

  37. Zhang, F., Aghagolzadeh, M., & Oweiss, K. (2010). An implantable neuroprocessor for multichannel compressive neural recording and on-the-fly spike sorting with wireless telemetry. In Biomedical Circuits and Systems Conference (BioCAS), 2010 IEEE. pp. 1–4.

  38. Zhang, F., Aghagolzadeh, M., & Oweiss, K. (2011). A low-power implantable neuroprocessor on nano-FPGA for brain machine interface applications. In the 36th IEEE International Conference on Acoustics, Speech and Signal Processing.

  39. Oweiss, K. G. (2002). Multiresolution analysis of multichannel neural recordings in the context of signal detection, estimation, classification and noise suppression. Ph.D Thesis. Ann Arbor: University of Michigan.

  40. Sun, Y., Huang, S., Oresko, J. J., & Cheng, A. C. (2010). Programmable neural processing on a Smartdust for brain-computer interfaces. IEEE Transactions on Biomedical Circuits and Systems, 4, 265–273.

    Article  MATH  Google Scholar 

  41. Zhang, F., Aghagolzadeh, M., Oweiss, K. (2011). A programmable and implantable microsystem for multimodal processing of ensemble neural recordings. In the 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Oweiss.

Additional information

Manuscript received Jun. 15, 2011. This work was supported by the National Institutes of Health under Grant NS062031.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, F., Aghagolzadeh, M. & Oweiss, K. A Fully Implantable, Programmable and Multimodal Neuroprocessor for Wireless, Cortically Controlled Brain-Machine Interface Applications. J Sign Process Syst 69, 351–361 (2012). https://doi.org/10.1007/s11265-012-0670-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-012-0670-x

Keywords

Navigation