Skip to main content
Log in

Range Analysis of Matrix Factorization Algorithms for an Overflow Free Fixed-point Design

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

We consider the problem of enabling robust range estimation of matrix factorization algorithms like eigenvalue decomposition (EVD) algorithm and singular value decomposition (SVD) for a reliable fixed-point design. The simplicity of fixed-point circuitry has always been so tempting to implement EVD algorithms in fixed-point arithmetic. Working towards an effective fixed-point design, integer bit-width allocation is a significant step which has a crucial impact on accuracy and hardware efficiency. This paper investigates the shortcomings of the existing range estimation methods while deriving bounds for the variables of the EVD algorithm. In light of the circumstances, we introduce a range estimation approach based on vector and matrix norm properties together with a scaling procedure that maintains all the assets of an analytical method. The method could derive robust and tight bounds for the variables of EVD and SVD algorithm. The bounds derived using the proposed approach remain same for any input matrix and are also independent of the number of iterations or size of the problem. It was found that by the proposed range estimation approach, all the variables generated during the computation of EVD and SVD algorithms are bounded within ± 1. We also tried to contemplate the effect of different kinds of scaling factors on the bounds of the variables. Some benchmark hyperspectral data sets have been used to evaluate the efficiency of the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banciu, A. (2012). A stochastic approach for the range evaluation. Ph.D. thesis, Université, Rennes 1.

  2. Burger, J., & Gowen, A. (2011). Data handling in hyperspectral image analysis. Chemometrics and Intelligent Laboratory Systems, 108(1), 13–22.

    Article  Google Scholar 

  3. Carletta, J., Veillette, R., Krach, F., Fang, Z. (2003). Determining appropriate precisions for signals in fixed-point iir filters. In Proceedings of the 40th annual design automation conference (pp. 656–661). ACM.

  4. Cesear, T., & Uribe, R. (2005). Exploration of least-squares solutions of linear systems of equations with fixed-point arithmetic hardware. In Software defined radio technical conference,(SDR’05).

  5. Chaudhari, A.J., Darvas, F., Bading, J.R., Moats, R.A., Conti, P.S., Smith, D.J., Cherry, S.R., Leahy, R.M. (2005). Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging. Physics in Medicine & Biology, 50(23), 5421.

    Article  Google Scholar 

  6. Chen, Y.L., Zhan, C.Z., Jheng, T.J., Wu, A.Y.A. (2013). Reconfigurable adaptive singular value decomposition engine design for high-throughput mimo-ofdm systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 21(4), 747–760.

    Article  Google Scholar 

  7. Constantinides, G., Kinsman, A.B., Nicolici, N. (2011). Numerical data representations for fpga-based scientific computing. IEEE Design & Test of Computers, 28(4), 8–17.

    Article  Google Scholar 

  8. Datta, B.N. (2010). Numerical linear algebra and applications. Siam.

  9. Demmel, J., & Veselic, K. (1992). Jacobi’s method is more accurate than qr. SIAM Journal on Matrix Analysis and Applications, 13(4), 1204–1245.

    Article  MathSciNet  MATH  Google Scholar 

  10. Demmel, J.W. (1997). Applied numerical linear algebra. Siam.

  11. Egho, C., & Vladimirova, T. (2012). Hardware acceleration of the integer karhunen-loève transform algorithm for satellite image compression. In Geoscience and remote sensing symposium (IGARSS), 2012 IEEE international (pp. 4062–4065). IEEE.

  12. Egho, C., & Vladimirova, T. (2014). Adaptive hyperspectral image compression using the klt and integer klt algorithms. In 2014 NASA/ESA conference on Adaptive hardware and systems (AHS) (pp. 112–119). IEEE.

  13. Egho, C., Vladimirova, T., Sweeting, M.N. (2012). Acceleration of karhunen-loève transform for system-on-chip platforms. In 2012 NASA/ESA conference on adaptive hardware and systems (AHS) (pp. 272–279). IEEE.

  14. Feist, T. (2012). Vivado design suite. White Paper 5.

  15. Feng, C.W., Hu, T.K., Chang, J.C., Fang, W.C. (2014). A reliable brain computer interface implemented on an fpga for a mobile dialing system. In 2014 IEEE international symposium on circuits and systems (ISCAS) (pp. 654–657). IEEE.

  16. Fry, T.W., & Hauck, S. (2002). Hyperspectral image compression on reconfigurable platforms. In 2002. Proceedings. 10th annual IEEE symposium on field-programmable custom computing machines (pp. 251–260). IEEE.

  17. Golub, G.H., & Van Loan, C.F. (2012). Matrix computations Vol. 3. Baltimore: JHU Press.

    Google Scholar 

  18. Gonzalez, C., Lopez, S., Mozos, D., Sarmiento, R. A novel fpga-based architecture for the estimation of the virtual dimensionality in remotely sensed hyperspectral images. Journal of Real-Time Image Processing, pp 1–12.

  19. Goubault, E., & Putot, S. (2015). A zonotopic framework for functional abstractions. Formal Methods in System Design, 47(3), 302–360.

    Article  MATH  Google Scholar 

  20. Grammenos, R.C., Isam, S., Darwazeh, I. (2011). Fpga design of a truncated svd based receiver for the detection of sefdm signals. In 2011 IEEE 22nd international symposium on Personal indoor and mobile radio communications (PIMRC) (pp. 2085–2090). IEEE.

  21. Hall, P., Marshall, D., Martin, R. (2000). Merging and splitting eigenspace models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(9), 1042–1049.

    Article  Google Scholar 

  22. Herde, C., Eggers, A., Fränzle, M., Teige, T. (2008). Analysis of hybrid systems using hysat. In 2008. ICONS 08. Third international conference on Systems (pp. 196–201). IEEE.

  23. Higham, N.J. (2002). Accuracy and stability of numerical algorithms. Siam.

  24. Kabi, B., Sahadevan, A.S., Mohanty, R., Routray, A., Das, B.S., Mohanty, A. An overflow-free fixed-point singular value decomposition algorithm for dimensionality reduction of hyperspectral images.

  25. Kabi, B., Sahadevan, A.S., Pradhan, T. (2017). An overflow free fixed-point eigenvalue decomposition algorithm: Case study of dimensionality reduction in hyperspectral images. In 2017 Conference on design and architectures for signal and image processing (DASIP) (pp. 1–9). IEEE.

  26. Kasap, S., & Redif, S. (2014). Novel field-programmable gate array architecture for computing the eigenvalue decomposition of para-hermitian polynomial matrices. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 22(3), 522–536.

    Article  Google Scholar 

  27. Kim, S., Kum, K.I., Sung, W. (1998). Fixed-point optimization utility for c and c++ based digital signal processing programs. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 45(11), 1455–1464.

    Article  Google Scholar 

  28. Kinsman, A.B., & Nicolici, N. (2010). Bit-width allocation for hardware accelerators for scientific computing using sat-modulo theory. IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems, 29(3), 405–413.

    Article  Google Scholar 

  29. Kinsman, A.B., & Nicolici, N. (2011). Automated range and precision bit-width allocation for iterative computations. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 9(30), 1265–1278.

    Article  Google Scholar 

  30. Kota, K., & Cavallaro, J.R. (1993). Numerical accuracy and hardware tradeoffs for cordic arithmetic for special-purpose processors. IEEE Transactions on Computers, 42(7), 769–779.

    Article  Google Scholar 

  31. Kum, K.I., Kang, J., Sung, W. (2000). Autoscaler for c: An optimizing floating-point to integer c program converter for fixed-point digital signal processors. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 47(9), 840–848.

    Article  Google Scholar 

  32. Lee, D.U., Gaffar, A.A., Cheung, R.C., Mencer, O., Luk, W., Constantinides, G., et al. (2006). Accuracy-guaranteed bit-width optimization. IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems, 25(10), 1990–2000.

    Article  Google Scholar 

  33. Liu, Z., Dickson, K., McCanny, J.V. (2005). Application-specific instruction set processor for soc implementation of modern signal processing algorithms. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(4), 755–765.

    Article  Google Scholar 

  34. López, J., Carreras, C., Nieto-Taladriz, O., et al. (2007). Improved interval-based characterization of fixed-point lti systems with feedback loops. IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems, 26(11), 1923–1933.

    Article  Google Scholar 

  35. Lopez, S., Vladimirova, T., Gonzalez, C., Resano, J., Mozos, D., Plaza, A. (2013). The promise of reconfigurable computing for hyperspectral imaging onboard systems: a review and trends. Proceedings of the IEEE, 101(3), 698–722.

    Article  Google Scholar 

  36. Martel, M., Najahi, A., Revy, G. (2014). Toward the synthesis of fixed-point code for matrix inversion based on cholesky decomposition. In 2014 conference on Design and architectures for signal and image processing (DASIP) (pp. 1–8). IEEE.

  37. Menard, D., Chillet, D., Sentieys, O. (2006). Floating-to-fixed-point conversion for digital signal processors. EURASIP Journal on Applied Signal Processing, 2006, 77–77.

    Google Scholar 

  38. Menard, D., Rocher, R., Sentieys, O. (2008). Analytical fixed-point accuracy evaluation in linear time-invariant systems. IEEE Transactions on Circuits and Systems I: Regular Papers, 55(10), 3197–3208.

    Article  MathSciNet  Google Scholar 

  39. Milford, D., & Sandell, M. (2014). Singular value decomposition using an array of cordic processors. Signal Processing, 102, 163–170.

    Article  Google Scholar 

  40. Mohanty, R., Anirudh, G., Pradhan, T., Kabi, B., Routray, A. (2014). Design and performance analysis of fixed-point jacobi svd algorithm on reconfigurable system. IERI Procedia, 7, 21–27.

    Article  Google Scholar 

  41. Moore, R.E. (1966). Interval analysis Vol. 4. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  42. Nehmeh, R., Menard, D., Banciu, A., Michel, T., Rocher, R. (2014). Integer word-length optimization for fixed-point systems. In 2014 IEEE nternational conference on Acoustics, speech and signal processing (ICASSP) (pp. 8321–8325). IEEE.

  43. Nikolić, Z., Nguyen, H.T., Frantz, G. (2007). Design and implementation of numerical linear algebra algorithms on fixed point dsps. EURASIP Journal on Advances in Signal Processing 2007.

  44. Pradhan, T., Kabi, B., Mohanty, R., Routray, A. (2016). Development of numerical linear algebra algorithms in dynamic fixed-point format: a case study of lanczos tridiagonalization. International Journal of Circuit Theory and Applications, 44(6), 1222–1262.

    Article  Google Scholar 

  45. Pradhan, T., Routray, A., Kabi, B. (2013). Comparative evaluation of symmetric svd algorithms for real-time face and eye tracking. In Matrix information geometry (pp. 323–340). Springer.

  46. Pradhan, T., Routray, A., Kabi, B. (2013). Fixed-point hestenes svd algorithm for computing eigen faces. International Journal OF Circuits Systems and Signal Processing, 7(6), 312–321.

    Google Scholar 

  47. Rahmati, M., Sadri, M.S., Naeini, M.A. (2008). Fpga based singular value decomposition for image processing applications. In ASAP 2008. International conference on application-specific systems, architectures and processors, 2008 (pp. 185–190). IEEE.

  48. Reddy, K., & Herron, T. (2001). Computing the eigen decomposition of a symmetric matrix in fixed-point arithmetic. In 10Th annual symposium on multimedia communications and signal processing, IEEE bangalore section, bangalore, india.

  49. Ren, Y., Liao, L., Maybank, S., Zhang, Y., Liu, X. (2017). Hyperspectral image spectral-spatial feature extraction via tensor principal component analysis. IEEE Geoscience and Remote Sensing Letters.

  50. Reshma, R., Sowmya, V., Soman, K. (2017). Effect of legendre–fenchel denoising and svd-based dimensionality reduction algorithm on hyperspectral image classification. Neural Computing and Applications pp. 1–10.

  51. Rocher, R., Menard, D., Scalart, P., Sentieys, O. (2012). Analytical approach for numerical accuracy estimation of fixed-point systems based on smooth operations. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(10), 2326–2339.

    Article  MathSciNet  Google Scholar 

  52. Sarbishei, O., & Radecka, K. (2013). On the fixed-point accuracy analysis and optimization of polynomial specifications. IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems, 32(6), 831–844.

    Article  Google Scholar 

  53. Segl, K., Guanter, L., Rogass, C., Kuester, T., Roessner, S., Kaufmann, H., Sang, B., Mogulsky, V., Hofer, S. (2012). Eetes—the enmap end-to-end simulation tool. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(2), 522–530.

    Article  Google Scholar 

  54. Shi, C., & Brodersen, R.W. (2004). Automated fixed-point data-type optimization tool for signal processing and communication systems. In Design automation conference, 2004. Proceedings. 41st (pp. 478–483). IEEE.

  55. Shih, W.Y., Liao, J.C., Huang, K.J., Fang, W.C., Cauwenberghs, G., Jung, T.P. (2013). An efficient vlsi implementation of on-line recursive ica processor for real-time multi-channel eeg signal separation. In Engineering in medicine and biology society (EMBC), 2013 35th annual international conference of the IEEE (pp. 6808–6811). IEEE.

  56. Skauli, T., & Farrell, J. (2013). A collection of hyperspectral images for imaging systems research. In ISAndamp;t/SPIE electronic imaging (pp. 86,600c–86,600c). International society for optics and photonics.

  57. Studer, C., Blosch, P., Friedli, P., Burg, A. (2007). Matrix decomposition architecture for mimo systems: Design and implementation trade-offs. In Conference record of the forty-first asilomar conference on Signals, systems and computers, 2007. ACSSC 2007 (pp. 1986–1990). IEEE.

  58. Szecówka, P. M., & Malinowski, P. (2010). Cordic and svd implementation in digital hardware. In Mixed design of integrated circuits and systems (MIXDES), 2010 Proceedings of the 17th International Conference (pp. 237–242). IEEE.

  59. Thieffry, M., Kruszewski, A., Goury, O., Guerra, T.M., Duriez, C. (2017). Dynamic control of soft robots. In IFAC World congress.

  60. Vakili, S., Langlois, J.P., Bois, G. (2013). Enhanced precision analysis for accuracy-aware bit-width optimization using affine arithmetic. IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems, 32(12), 1853–1865.

    Article  Google Scholar 

  61. Wang, Y., Cunningham, K., Nagvajara, P., Johnson, J. (2010). Singular value decomposition hardware for mimo: State of the art and custom design. In 2010 international conference on reconfigurable computing and FPGAs (reconfig) (pp. 400–405). IEEE.

  62. Wang, Z., & Bovik, A.C. (2009). Mean squared error: love it or leave it? a new look at signal fidelity measures. Signal Processing Magazine, IEEE, 26(1), 98–117.

    Article  Google Scholar 

  63. Wu, B., Zhu, J., Najm, F.N. (2006). Dynamic-range estimation. IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems, 25(9), 1618–1636.

    Article  Google Scholar 

  64. Zheng, P., & Gao, X. (2013). Fixed-point cca algorithm applied to ssvep based bci system. In 2013 IEEE symposium on computational intelligence, cognitive algorithms, mind, and brain (CCMB) (pp. 107–114). IEEE.

Download references

Acknowledgements

We would like to thank the editorial board of DASIP 2017 for considering our work in Special Issue of the Journal of Signal Processing Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bibek Kabi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabi, B., Sahadevan, A.S. Range Analysis of Matrix Factorization Algorithms for an Overflow Free Fixed-point Design. J Sign Process Syst 91, 787–804 (2019). https://doi.org/10.1007/s11265-018-1394-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-018-1394-3

Keywords

Navigation