Skip to main content
Log in

Simultaneous Removal of Azo and Phthalocyanine Dyes from Aqueous Solutions Using Weak Base Anion Exchange Resin

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The performance of the Purolite A847 weak basic anion exchanger in the simultaneous removal of the azo dye Lanasyn Navy M-DNL (LNCr) and the phthalocyanine dye Acid Blue 249 (CuPc) from acidic aqueous solutions was studied under dynamic conditions. The comparison of FTIR spectra of unloaded and dye-loaded anion exchangers made it possible to consider suitable sorption mechanisms. The results of dynamic experiments revealed that anion exchanger had a greater dynamic sorption capacity with a longer breakthrough time and a shorter length of mass transfer zone when both dyes LNCr and CuPc were removed from the one-component solution as compared to those of their mixture. Models of Wolborska and Juang were found to be suitable to predict the character of breakthrough curves and to determine the characteristic parameters of the Purolite A847 column useful for process design: the mass transfer coefficient β (1/min) and time at the break point τ (minutes). The result would be useful in the design of wastewater treatment plants for removal of azo and phthalocyanine dyes from aqueous solutions and water recycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aksu, Z., & Catgatay, S. S. (2006). Investigation of biosorption of Gemazol Turquise Blue-G reactive dye by dried Rhizopus arrhizus in batch and continuous system. Separation and Purification Technology, 48, 24–35.

    Article  CAS  Google Scholar 

  • Allegre, C., Moulin, P., Maisseu, M., & Charbit, G. L. (2006). Treatment and reuse of reactive dyeing effluents. Journal of Membrane Science, 269, 15–34.

    Article  CAS  Google Scholar 

  • Beck, U., Stohr, F-M., Nickel, H. (1985). Phthalocyanine and azo dyestuff mixtures and their use for dyeing paper. Resource document. http://www.archpatent.com/patents/4521217. Accessed 25 Jun 2010

  • Bohart, G. S., & Adams, E. Q. (1920). Some aspects of the behaviour of charcoal with respect to chlorine. Journal of the American Chemical Society, 42, 523–529.

    Article  CAS  Google Scholar 

  • Borba, C. E., da Silva, E. A., Fagundes Klen, M. R., Kroumov, A. D., & Guirardello, R. (2008). Prediction of copper(II) ions dynamic removal from a medium by using mathematical models with analytical solution. Journal of Hazardous Materials, 152, 366–372.

    Article  CAS  Google Scholar 

  • Chiou, M. S., & Li, H. Y. (2003). Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads. Chemosphere, 50, 1095–1105.

    Article  CAS  Google Scholar 

  • Chu, K. H. (2010). Fixed bed sorption: Setting the record straight on the Bohart-Adams and Thomas models. Journal of Hazardous Materials, 177, 1006–1012.

    Article  CAS  Google Scholar 

  • Clark, R. M. (1987). Evaluating the cost and performance of field-scale granular activated carbon systems. Environmental Science and Technology, 21, 573–580.

    Article  CAS  Google Scholar 

  • Coulson, J. M., Richardson, J. F., Backhurst, J. R., & Harker, J. H. (1991). Chemical engineering. Particle technology and separation processes (4th ed., Vol. 2). Bath: Butterworth-Heineman.

    Google Scholar 

  • Dorfner, K. (Ed.). (1991). Ion exchangers. Berlin: Walter de Gruyter.

    Google Scholar 

  • Dragan, S., Cristea, M., Airinei, A., Poinescu, I., & Luca, C. (1995). Sorption of aromatic compounds on macroporous anion exchangers based on polyacryloamide: relation between structure and sorption behavior. Journal of Applied Sciences, 55, 421–430.

    Article  Google Scholar 

  • Dulman, V., Simion, C., Bârsãnescu, A., Bunia, I., & Neagu, V. (2009). Adsorption of anionic textile dye Acid Green 9 from aqueous solution onto weak or strong base anion exchangers. Journal of Applied Polymer Science, 113, 615–627.

    Article  CAS  Google Scholar 

  • Environmental Agency (2002) Guidance for textile sector. Integrated pollution prevention and control (IPPC), IPPC S6.05. London: IPPC

  • Elwakeel, K. Z. (2009). Removal of Reactive Black 5 from aqueous solutions using magnetic chitosan resins. Journal of Hazardous Materials, 167, 383–392.

    Article  CAS  Google Scholar 

  • Greluk, M., & Hubicki, Z. (2009). Sorption of SPANDS azo dye on polystyrene anion exchangers: equilibrium and kinetic studies. Journal of Hazardous Materials, 172, 280–297.

    Article  Google Scholar 

  • Greluk, M., & Hubicki, Z. (2011). Comparison of the gel anion exchangers for removal of Acid Orange 7 from aqueous solution. Chemical Engineering Journal, 170, 184–193.

    Article  CAS  Google Scholar 

  • Greluk, M., & Hubicki, Z. (2013). Effect of basicity of anion exchangers and number and positions of sulfonic groups of acid dyes on dyes adsorption on macroporous anion exchangers with styrenic polymer matrix. Chemical Engineering Journal, 215–216, 731–739.

    Article  Google Scholar 

  • Gutierrez-Segura, E., Colin-Cruz, A., Solache-Rios, M., & Fall, C. (2012). Removal of Denim Blue from aqueous solutions by inorganic adsorbents in a fixed-bed column. Water, Air, and Soil Pollution, 223, 5505–5513.

    Article  CAS  Google Scholar 

  • Hamdaoui, Q. (2009). Removal of copper(II) from aqueous phase by Purolite C100-MB cation exchange resin in fixed bed columns: Modeling. Journal of Hazardous Materials, 161, 737–746.

    Article  CAS  Google Scholar 

  • Han, R., Zhang, J., Zou, W., Xiao, H., Shi, J., & Liu, H. (2006). Biosorption of copper(II) and lead(II) from aqueous solution by chaff in a fixed-bed column. Journal of Hazardous Materials, B133, 262–268.

    Article  Google Scholar 

  • Hogan, C. M. (2010). Heavy metal. Encyclopedia of Earth. In: E. Monosson, C. Cleveland (Eds) National Council for Science and the Environment, Washington

  • Hunger, K. (Ed.). (2003). Industrial dyes. Chemistry, properties, application. Weinheim: Wiley.

    Google Scholar 

  • Hutchins, R. A. (1973). New methods simplifies design of activated carbon systems. Chemical Engineering, 80, 133–135.

    CAS  Google Scholar 

  • Pure Water Lab (2013) Mass transfer zone. http://purewaterlab.org/pwl…/Mass_Transfer_Zone. Accessed 21 Jun 2012

  • Juang, R. S., Lin, S. H., & Wang, T. Y. (2003). Removal of metal ions from the complexed solutions in fixed bed using a strong-acid ion exchange resin. Chemosphere, 53, 1221–1228.

    Article  CAS  Google Scholar 

  • Kärcher, S., Kornmüller, A., & Jekel, M. (2001). Screening of commercial sorbents for removal of reactive dyes. Dyes and Pigments, 51, 111–125.

    Article  Google Scholar 

  • Kononova, O. N., Goryaeva, N. G., & Dychko, O. V. (2009). Ion exchange recovery of palladium (II) from nitrate weak acid solutions. Natural Science, 1, 166–175.

    Article  CAS  Google Scholar 

  • Kushwaha, S., Padmaja, P., & Sudhakar, P. P. (2013). Sorption of uranium from aqueous solutions using palm-shell-based adsorbents: a kinetic and equilibrium study. Journal of Environmental Radioactivity, 126, 115–124.

    Article  Google Scholar 

  • Laing, I. G. (1991). The impact of effluent regulation on the dye industry. Review of Progress in Coloration and Related Topics, 21, 56–71.

    Article  CAS  Google Scholar 

  • Leszczynska, M., & Hubicki, Z. (2009). Application of weakly and strongly basic anion exchangers for the removal of Brilliant Yellow from aqueous solutions. Desalination and Water Treatment, 2, 156–161.

    Article  CAS  Google Scholar 

  • Liu, C. H., Wu, J. S., Chiu, H. C., Suen, S. Y., & Chu, K. H. (2007). Removal of anionic reactive dyes from water using anion exchange membranes as adsorbers. Water Research, 41, 1491–1500.

    Article  CAS  Google Scholar 

  • Long, C., Li, Y., Yu, W., & Li, A. (2012). Removal of benzene and methyl ethyl ketone vapor: comparison of hypercrosslinked polymeric adsorbent with activated carbon. Journal of Hazardous Materials, 203–204, 251–256.

    Article  Google Scholar 

  • Loureiro, J., Costa, C., Dias, M., Lopes, J., & Rodrigues, A. (1985). Design methods for ion exchange equipment. In L. Liberti & J. R. Millar (Eds.), Fundamentals and applications of ion exchange (pp. 245–260). Dordrecht: Martinus Nijhoff.

    Chapter  Google Scholar 

  • Marais, E., & Nyokong, T. (2008). Adsorption of 4-nitrophenol onto Amberlite IRA-900 modified with metallophtalocyanines. Journal of Hazardous Materials, 152, 293–301.

    Article  CAS  Google Scholar 

  • Ming, Z. W., Long, C. P., Cai, P. B., Xing, Z. Q., & Zhang, X. B. (2006). Synergistic adsorption of phenol from aqueous solutions onto polymeric adsorbents. Journal of Hazardous Materials, 152, 123–129.

    Article  Google Scholar 

  • Poiger, T., Richardson, S. D., & Baughman, G. L. (2000). Analysis of anionic metallized azo and formazan dyes by capillary electrophoresis-mass spectrometry. Journal of Chromatography A, 886, 259–270.

    Article  CAS  Google Scholar 

  • Sakkayawong, N., Thiravetyan, P., & Nakbanpote, W. (2005). Adsorption mechanism of synthetic reactive dye wastewater by chitosan. Colloid and Interface Science, 86, 36–42.

    Article  Google Scholar 

  • Saldadze, K. M., & Kopylova-Valova, V. D. (1980). Complex-forming ion exchangers. Moscow: Nauka.

    Google Scholar 

  • Tavakoli, H., Sepehrian, H., Semnani, F., & Samadfam, M. (2013). Recovery of uranium from UCF liquid waste by anion exchange resin CG-400: breakthrough curves, elution behavior and modeling studies. Annals of Nuclear Energy, 54, 149–153.

    Article  CAS  Google Scholar 

  • Tremillon, B. (1999). An applied analytical approach: reactions in solution, part 1. New York: Wiley.

    Google Scholar 

  • Trgo, M., Vukojevic Medvidovic, N., & Peric, J. (2011). Application of mathematical empirical models to dynamic removal of lead on natural zeolite clinoptilolite in a fixed bed column. Indian Journal of Chemical Technology, 18, 123–131.

    CAS  Google Scholar 

  • Valderrama, C., Cortina, J. L., Faffan, A., Gamisans, X., & de la Heras, F. X. (2008). Evaluation of hyper-cross-linked polymeric sorbents (Macronet MN200 and MN300) on dye (Acid red 14) removal process. Reactive and Functional Polymers, 68(3), 679–691.

    Article  CAS  Google Scholar 

  • Wang, S., & Li, H. (2007). Kinetic modelling and mechanism of dye adsorption on unbarned carbon. Dyes and Pigments, 72, 308–314.

    Article  CAS  Google Scholar 

  • Wawrzkiewicz, M., & Hubicki, Z. (2009a). Removal or tartrazine from aqueous solutions by strongly basic polystyrene anion exchange resins. Journal of Hazardous Materials, 164, 502–509.

    Article  CAS  Google Scholar 

  • Wawrzkiewicz, M., & Hubicki, Z. (2009b). Kinetic studies of dyes sorption from aqueous solutions onto the strongly basic anion-exchanger Lewatit MonoPlus M-600. Chemical Engineering Journal, 150, 509–515.

    Article  CAS  Google Scholar 

  • Wawrzkiewicz, M., & Hubicki, Z. (2009c). Equilibrium and kinetic studies on the adsorption of acidic dye by the gel anion exchanger. Journal of Hazardous Materials, 172, 868–874.

    Article  CAS  Google Scholar 

  • Wolborska, A. (1989). Adsorption on activated carbon of p-nitrophenol from aqueous solution. Water Research, 23, 85–91.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Clariant (Switzerland) for the Lanasyn Navy M-DNL dye. Thanks also belong to Purolite International Ltd (UK) for providing the anion exchanger Purolite A847.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Kaušpėdienė.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaušpėdienė, D., Gefenienė, A., Kazlauskienė, E. et al. Simultaneous Removal of Azo and Phthalocyanine Dyes from Aqueous Solutions Using Weak Base Anion Exchange Resin. Water Air Soil Pollut 224, 1769 (2013). https://doi.org/10.1007/s11270-013-1769-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1769-9

Keywords

Navigation