Skip to main content
Log in

Isolation and Characterization of Oil-Degrading Microorganisms for Bench-Scale Evaluations of Autochthonous Bioaugmentation for Soil Remediation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Autochthonous bioaugmentation (uses microorganisms indigenous to the target sites) is proposed as a promising remediation technique that can overcome ecological barriers which usually impede successful applications of conventional bioaugmentation remedy. This study aimed to select and characterize strains for bench-scale evaluations of autochthonous bioaugmentation for remediation for oil-contaminated soil. Twenty-one oil-degrading stains were isolated from contaminated soil in an oil refinery plant in China. Six strains with high oil-degradation efficiencies were chosen for further morphological and biochemical characterizations, and their biosurfactant production potentials were measured. All six strains were able to produce biosurfactant, and the strain with the highest oil-degradation efficiency had the highest biosurfactant production potential, indicating the important role that biosurfactant played in accelerating biodegradation. Then we prepared the bioaugmentation consortium by mixing equal proportions of these six strains. Microcosm experiments showed that, after 84 days of incubation, the residual oil concentration in bioaugmented microcosms decreased by 63.2 ± 20.1 % while the residual oil concentration in the control only decreased by 21.3 ± 5.2 %. Gas chromatography-mass spectrum analysis further corroborated that 84 days of bioaugmentation significantly reduced the total number of contaminants and changed contaminant composition (resulting in higher relative abundance of short-chain alkanes and lower relative abundance of long-chain alkanes). All of these evidence showed that autochthonous bioaugmentation was an effective remediation technology, and the microbial consortium we isolated was an excellent bioaugmentation agent for crude oil-contaminated site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvarez, P. J., & Illman, W. A. (2005). Bioremediation and natural attenuation: process fundamentals and mathematical models. Hoboken: Wiley-Interscience.

    Book  Google Scholar 

  • Atlas, R. M., & Bartha, R. (1997). Microbial ecology: fundamentals and applications. Redwood City: Benjamin Cummings.

    Google Scholar 

  • Balachandran, C., Duraipandiyan, V., Balakrishna, K., & Ignacimuthu, S. (2012). Petroleum and polycyclic aromatic hydrocarbons (PAHs) degradation and naphthalene metabolism in Streptomyces sp (ERI-CPDA-1) isolated from oil contaminated soil. Bioresource Technology, 112, 83–90.

    Article  CAS  Google Scholar 

  • Barabas, G., Vargha, G., Szabo, I. M., Penyige, A., Damjanovich, S., Szollosi, J., et al. (2001). n-Alkane uptake and utilisation by Streptomyces strains. Antonie van Leeuwenhoek International Journal of General and Molecular Microbiology, 79, 269–276.

    Article  CAS  Google Scholar 

  • Bedient, P. B., Rifai, H. S., & Newell, C. J. (1999). Ground water contamination: transport and remediation (second edition). Upper Saddle River: PTR Prentice Hall.

    Google Scholar 

  • Cameotra, S. S., & Bollag, J. M. (2003). Biosurfactant-enhanced bioremediation of polycyclic aromatic hydrocarbons. Critical Reviews in Environmental Science and Technology, 33, 111–126.

    Article  CAS  Google Scholar 

  • Davis, J. R., & Sello, J. K. (2010). Regulation of genes in Streptomyces bacteria required for catabolism of lignin-derived aromatic compounds. Applied Microbiology and Biotechnology, 86, 921–929.

    Article  CAS  Google Scholar 

  • Dong, X., & Cai, M. (2011). System identification manual of common bacteria (second edition). Beijing: Science Press.

    Google Scholar 

  • El Fantroussi, S., & Agathos, S. N. (2005). Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Current Opinion in Microbiology, 8, 268–275.

    Article  Google Scholar 

  • Ferradji, F. Z., Mnif, S., Badis, A., Rebbani, S., Fodil, D., Eddouaouda, K., et al. (2014). Naphthalene and crude oil degradation by biosurfactant producing Streptomyces spp. isolated from Mitidja Plain soil (North of Algeria). International Biodeterioration & Biodegradation, 86, 300–308.

    Article  CAS  Google Scholar 

  • Griffiths, P. R., & Haseth, J. A. D. (2007). Fourier transform infrared spectrometry (second edition). Hoboken: Wiley-Interscience.

    Book  Google Scholar 

  • Gunasekera, T. S., Striebich, R. C., Mueller, S. S., Strobel, E. M., & Ruiz, O. N. (2013). Transcriptional profiling suggests that multiple metabolic adaptations are required for effective proliferation of Pseudomonas aeruginosa in jet fuel. Environmental Science & Technology, 47, 13449–13458.

    Article  CAS  Google Scholar 

  • Holt, J. G. (1994). Bergey’s manual of determinative bacteriology. Baltimore: Williams & Wilkins.

    Google Scholar 

  • Hosokawa, R., Nagai, M., Morikawa, M., & Okuyama, H. (2009). Autochthonous bioaugmentation and its possible application to oil spills. World Journal of Microbiology and Biotechnology, 25, 1519–1528.

    Article  CAS  Google Scholar 

  • Huang, X.-F., Liu, J., Lu, L.-J., Wen, Y., Xu, J.-C., Yang, D.-H., et al. (2009). Evaluation of screening methods for demulsifying bacteria and characterization of lipopeptide bio-demulsifier produced by Alcaligenes sp. Bioresource Technology, 100, 1358–1365.

    Article  CAS  Google Scholar 

  • Lee, D. H., Moon, S. R., Park, Y. H., Kim, J. H., Kim, H., Parales, R. E., et al. (2010). Pseudomonas taeanensis sp nov., isolated from a crude oil-contaminated seashore. International Journal of Systematic and Evolutionary Microbiology, 60, 2719–2723.

    Article  CAS  Google Scholar 

  • Liu, H., Xu, J., Liang, R. & Liu, J. (2014). Characterization of the medium- and long-chain n-alkanes degrading Pseudomonas aeruginosa strain SJTD-1 and its alkane hydroxylase genes. Plos One. 9.

  • Loffler, F. E., & Edwards, E. A. (2006). Harnessing microbial activities for environmental cleanup. Current Opinion in Biotechnology, 17, 274–284.

    Article  Google Scholar 

  • Luo, Q., Hiessl, S., & Steinbüchel, A. (2014). Functional diversity of Nocardia in metabolism. Environmental Microbiology, 16, 29–48.

    Article  CAS  Google Scholar 

  • Ma, J., Xiu, Z., Monier, A., Mamonkina, I., Zhang, Y., He, Y., et al. (2011). Aesthetic groundwater quality impacts from a continuous pilot-scale release of an ethanol blend. Ground Water Monitoring & Remediation, 31, 47–54.

    Article  Google Scholar 

  • Ma, J., Rixey, W. G., & Alvarez, P. J. J. (2013). Microbial processes influencing the transport, fate and groundwater impacts of fuel ethanol releases. Current Opinion in Biotechnology, 24, 457–466.

    Article  CAS  Google Scholar 

  • Ma, J., Rixey, W. G., & Alvarez, P. J. J. (2015). Increased fermentation activity and persistent methanogenesis in a model aquifer system following source removal of an ethanol blend release. Water Research, 68, 479–486.

    Article  CAS  Google Scholar 

  • Madigan, M. T., & Martinko, J. M. (2006). Brock biology of microorganisms. Upper Saddle River: Pearson/Prentice Hall.

    Google Scholar 

  • MEP-China. (2012). Water quality-determination of petroleum oil, animal and vegetable oils—infrared photometric method (HJ 637–2012). Chinese Ministry of Environmental Protection.

  • Nhi-Cong, L. T., Mikolasch, A., Awe, S., Sheikhany, H., Klenk, H.-P., & Schauer, F. (2010). Oxidation of aliphatic, branched chain, and aromatic hydrocarbons by Nocardia cyriacigeorgica isolated from oil-polluted sand samples collected in the Saudi Arabian Desert. Journal of Basic Microbiology, 50, 241–253.

    Article  CAS  Google Scholar 

  • Qiu, J. (2010). China faces up to groundwater crisis. Nature, 466, 308–308.

    Article  CAS  Google Scholar 

  • Qiu, J. (2011). China to spend billions cleaning up groundwater. Science, 334, 745.

    Article  CAS  Google Scholar 

  • Quatrini, P., Scaglione, G., De Pasquale, C., Riela, S., & Puglia, A. M. (2008). Isolation of gram-positive n-alkane degraders from a hydrocarbon-contaminated Mediterranean shoreline. Journal of Applied Microbiology, 104, 251–259.

    CAS  Google Scholar 

  • Radwan, S. S., Barabas, G., Sorkhoh, N. A., Damjanovich, S., Szabo, I., Szollosi, J., et al. (1998). Hydrocarbon uptake by Streptomyces. Fems Microbiology Letters, 169, 87–94.

    Article  CAS  Google Scholar 

  • Rodrigues, L. R., Teixeira, J. A., van der Mei, H. C., & Oliveira, R. (2006). Isolation and partial characterization of a biosurfactant produced by Streptococcus thermophilus A. Colloids and Surfaces B: Biointerfaces, 53, 105–112.

    Article  CAS  Google Scholar 

  • Saadoun, I., Alawawdeh, M., Jaradat, Z., & Ababneh, Q. (2008). Growth of Streptomyces spp. From hydrocarbon-polluted soil on diesel and their analysis for the presence of alkane hydroxylase gene (alkB) by PCR. World Journal of Microbiology and Biotechnology, 24, 2191–2198.

    Article  CAS  Google Scholar 

  • Salgado-Brito, R., Neria, M. I., Mesta-Howard, A. M., Diaz Cedillo, F., & Wang, E. T. (2007). Oxidation of solid paraffin (C11-40) by Pseudomonas aeruginosa MGP-1. Annals of Microbiology, 57, 321–328.

    Article  CAS  Google Scholar 

  • She, Y.-h., Zhang, F., Xia, J.-j., Kong, S.-q., Wang, Z.-i., Shu, F.-c., et al. (2011). Investigation of biosurfactant-producing indigenous microorganisms that enhance residue oil recovery in an oil reservoir after polymer flooding. Applied Biochemistry and Biotechnology, 163, 223–234.

    Article  CAS  Google Scholar 

  • Smith, B. C. (2011). Fundamentals of Fourier transform infrared spectroscopy (second edition). Boca Raton: CRC Press.

    Book  Google Scholar 

  • Souza, E. C., Vessoni-Penna, T. C., & de Souza Oliveira, R. P. (2014). Biosurfactant-enhanced hydrocarbon bioremediation: an overview. International Biodeterioration & Biodegradation, 89, 88–94.

    Article  CAS  Google Scholar 

  • Swaranjit Singh, C., & Makkar, R. S. (2010). Biosurfactant-enhanced bioremediation of hydrophobic pollutants. Pure and Applied Chemistry, 82, 97–116.

    Google Scholar 

  • Thompson, I. P., van der Gast, C. J., Ciric, L., & Singer, A. C. (2005). Bioaugmentation for bioremediation: the challenge of strain selection. Environmental Microbiology, 7, 909–915.

    Article  CAS  Google Scholar 

  • Ueno, A., Ito, Y., Yumoto, I., & Okuyama, H. (2007). Isolation and characterization of bacteria from soil contaminated with diesel oil and the possible use of these in autochthonous bioaugmentation. World Journal of Microbiology and Biotechnology, 23, 1739–1745.

    Article  CAS  Google Scholar 

  • van Veen, J. A., van Overbeek, L. S., & van Elsas, J. D. (1997). Fate and activity of microorganisms introduced into soil. Microbiology and Molecular Biology Reviews, 61, 121.

    Google Scholar 

  • Weber, W. J., Jr., & Corseuil, H. X. (1994). Inoculation of contaminated subsurface soils with enriched indigenous microbes to enhance bioremediation rates. Water Research, 28, 1407–1414.

    Article  CAS  Google Scholar 

  • Whyte, L. G., Bourbonniere, L., & Greer, C. W. (1997). Biodegradation of petroleum hydrocarbons by psychrotrophic Pseudomonas strains possessing both alkane (alk) and naphthalene (nah) catabolic pathways. Applied and Environmental Microbiology, 63, 3719–3723.

    CAS  Google Scholar 

  • Youssef, N. H., Duncan, K. E., Nagle, D. P., Savage, K. N., Knapp, R. M., & McInerney, M. J. (2004). Comparison of methods to detect biosurfactant production by diverse microorganisms. Journal of Microbiological Methods, 56, 339–347.

    Article  CAS  Google Scholar 

  • Yuste, L., Corbella, M. a. E., Turiégano, M. a. J., Karlson, U., Puyet, A., & Rojo, F. (2000). Characterization of bacterial strains able to grow on high molecular mass residues from crude oil processing. Fems Microbiology Ecology, 32, 69–75.

    Article  CAS  Google Scholar 

  • Zheng, C., & Liu, J. (2013). China’s “love canal” moment? Science, 340, 810.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (No. 21407180), National High Technology Research and Development Program of China (863 Program) (No. 2012AA063401), and Science Foundation of China University of Petroleum-Beijing (No. 2462014YJRC016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangxu Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Yan, G., Ma, W. et al. Isolation and Characterization of Oil-Degrading Microorganisms for Bench-Scale Evaluations of Autochthonous Bioaugmentation for Soil Remediation. Water Air Soil Pollut 226, 272 (2015). https://doi.org/10.1007/s11270-015-2491-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2491-6

Keywords

Navigation