Skip to main content

Advertisement

Log in

Study of Arsenic-Contaminated Soil Bacterial Community Using Biochip Technology

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The ecosystems near arsenic mining industrial areas are characterized with an elevated level of pollutants. In Caucasus region, such a hotspot is presented in Western Georgia: Uravi and Tsana abandoned arsenic production facilities and nearby mining tailings stored in deteriorating conditions that pose a threat to the population. The research presents a study of the local bacteria community of highly arsenic-contaminated soils (from 400 mg/kg at Uravi arsenic sulfide mineral processing facility to 11.3 g/kg at arsenic oxide storage area in Tsana) using an innovative, multitasking microscale bioanalytical method for environmental enquiries – DNA biochip (microarray). The detected Shewanella spp., Bacillus spp., and sulfate-reducing bacteria were considered as promising objects for future projects on in situ recovery of vast arsenic-contaminated areas applying remediation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2017). The ATSDR 2017 substance priority list https://www.atsdr.cdc.gov/SPL/#2017spl

  • Ahmad, W., Najeeb, U., & Zia, M. H. (2014). Soil contamination with metals: Sources, types and implications. In K. R. Hakeem, M. Sabir, M. Ozturk, & A. R. Mermut (Eds.), Soil remediation and plants: Prospects and challenges (pp. 37–61). Cambridge, Massachusetts: Academic Press.

    Google Scholar 

  • Al-Humam, A. A., Zinkevich, V., Sapojnikova, N., Kartvelishvili, T., Asatiani, N. (2018). Biochips and rapid methods for detecting organisms involved in microbially influenced corrosion (MIC). USA patent 15/949,400 http://www.freepatentsonline.com/20180298429.pdf

  • ASTM, E361-99. (2005). Standard test methods for the determination of arsenic and Lead in ferromanganese. West Conshohocken, PA: ASTM International.

    Google Scholar 

  • Ayangbenro, A. S., Olanrewaju, O. S., & Babalola, O. O. (2018). Sulfate-reducing bacteria as an effective tool for sustainable acid mine bioremediation. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2018.01986.

  • Bahar, M. M., Megharaj, M., & Naidu, R. (2012). Arsenic bioremediation potential of a new arsenite-oxidizing bacterium Stenotrophomonas sp. MM-7 isolated from soil. Biodegradation, 23(6), 803–812.

    CAS  Google Scholar 

  • Bakradze, E., Vodyanitskii, Y., Urushadze, T., Chankseliani, Z., & Arabidze, M. (2018). About rationing of the heavy metals in soils of Georgia. Annals of Agrarian Science, 16, 1–6.

    Google Scholar 

  • Beier, M., & Hoheisel, J. D. (1999). Versatile derivatization of solid support media for covalent bonding on DNA-microchips. Nucleic Acids Research, 27, 1970–1977.

    CAS  Google Scholar 

  • Brown, E., Mengmeng, Z., Taotao, F., Juanli, W., & Junbo, N. (2018). Mechanisms of bacterial degradation of arsenic. Indian Journal of Microbiology Research, 5, 436–441.

    Google Scholar 

  • Chaerun, S. K., Pangesti, N. P., Toyota, K., & Whitman, W. B. (2011). Changes in microbial functional diversity and activity in paddy soils irrigated with industrial wastewaters in Bandung, West Java Province, Indonesia. Water, Air, & Soil Pollution, 217(1–4), 491–502.

    CAS  Google Scholar 

  • Chang, J. S., Yoon, I. H., & Kim, K. W. (2007). Isolation and ars detoxification of arsenite-oxidizing bacteria from abandoned arsenic-contaminated mines. Journal of Microbiology and Biotechnology, 17(5), 812–821.

    CAS  Google Scholar 

  • Cuebas, M., Sannino, D., & Bini, E. (2011). Isolation and characterization of arsenic resistant Geobacillus kaustophilus strain from geothermal soils. Journal of Basic Microbiology, 51(4), 364–371.

    CAS  Google Scholar 

  • Cullen, W. R., & Reimer, K. J. (1989). Arsenic speciation in the environment. Chemical Reviews, 89(4), 713–764.

    CAS  Google Scholar 

  • Gagelidze, N., Zaqarishvili, N., Thelidze, A., & Kakhadze, A. (2019). Soil atlas of Georgia. Tbilisi: Mtsignobari (in Georgian).

    Google Scholar 

  • Han, F. X., Su, Y., Monts, D. L., Plodinec, M. J., Banin, A., & Triplett, G. E. (2003). Assessment of global industrial-age anthropogenic arsenic contamination. Naturwissenschaften, 90(9), 395–401.

    CAS  Google Scholar 

  • Hasanuzzaman, M., Nahar, K., & Fujita, M. (2014). Arsenic toxicity in plants and possible remediation. In K. R. Hakeem, M. Sabir, M. Ozturk, & A. Murmet (Eds.), Soil remediation and plants: Prospects and challenges (pp. 433–501). Cambridge, Massachusetts: Academic Press.

    Google Scholar 

  • Hoeft McCann, S,, Boren, A,, Hernandez-Maldonado, J., et al. (2017). Arsenite as an electron donor for anoxygenic photosynthesis: Description of three strains of Ectothiorhodospira from mono Lake, California and Big Soda Lake, Nevada. Life (Basel), 7(1), 1. Published 2016 Dec 26. doi:https://doi.org/10.3390/life7010001.

  • Huang, H., Jia, Y., Sun, G. X., & Zhu, Y. G. (2012). Arsenic speciation and volatilization from flooded paddy soils amended with different organic matters. Environmental Science & Technology, 46(4), 2163–2168.

    CAS  Google Scholar 

  • Islam, M. M., Karim, M., Zheng, X., & Li, X. (2018). Heavy metal and metalloid pollution of soil, water and foods in Bangladesh: A critical review. International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph15122825.

  • Katsoyiannis, I. A., & Zouboulis, A. I. (2004). Application of biological processes for the removal of arsenic from groundwaters. Water Research, 38(1), 17–26.

    CAS  Google Scholar 

  • Konstantinov, M. M. (1932). Arsenic mines of USSR. Leningrad: State Scientific and Technical Geological Prospecting Publishing http://elib.uraic.ru/bitstream/123456789/23533/1/0022730.pdf (in Russian).

    Google Scholar 

  • Kvesitadze, G., Khatisashvili, G., Sadunishvili, T., & Ramsden, J. J. (2006). Biochemical mechanisms of detoxification in higher plants: Basis of phytoremediation. Springer Science & Business Media.

  • Kvinikadze, M., Kuparadze, D., Pataridze, D., Khundadze, N., & Kirakosyan, V. (2010). Geoecology of the Black Sea coast of Georgia. Επιστημονική Επετηρίδα του Τμήματος Γεωλογίας (ΑΠΘ), 100, 97–104.

    Google Scholar 

  • Kvrivishvili, T., Urushadze, T., Winfried, B., Jorbenadze, L., Tsereteli, G., Merabishvili, M., Gogidze, K., Kakhadze, R., & Kunchulia, I. (2018). The red book of the soils of Georgia. Annals of Agrarian Science, 16(3), 332–343.

    Google Scholar 

  • Liao, V. H. C., Chu, Y. J., Su, Y. C., Hsiao, S. Y., Wei, C. C., Liu, C. W., & Chang, F. J. (2011). Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan. Journal of Contaminant Hydrology, 123(1–2), 20–29.

    CAS  Google Scholar 

  • Liu, J., Lu, Y., Wu, Q., Goyer, R. A., & Waalkes, M. P. (2008). Mineral arsenicals in traditional medicines: Orpiment, realgar, and arsenolite. Journal of Pharmacology and Experimental Therapeutics, 326(2), 363–368.

    CAS  Google Scholar 

  • Loy, A., Lehner, A., Lee, N., Adamczyk, J., Meier, H., Ernst, J., Schleifer, K.-H., & Wagner, M. (2002). Oligonucleotide mcroarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Applied and Environmental Microbiology, 68, 5064–5081.

    CAS  Google Scholar 

  • Malutan, R., & Vilda, P.G. (2012). Thermodynamics of microarray hybridization. In R. Morales-Rodriguez (Ed.), Thermodynamics - Fundamentals and Its Application in Science (pp. 463–482). InTechOpen https://doi.org/10.5772/51624

  • Masindi, V., & Muedi, K. L. (2018). Environmental contamination by heavy metals. In H. El-Din Saleh & R. Aglan (Eds), Heavy Metals (pp. 115–133). IntechOpen https://doi.org/10.5772/intechopen.76082

  • Ministry of Labour, Health, and Social Affairs of Georgia. (2003). The amendment in the order №297/N: About the conformation of normal quality of the environment by Minister of Labour, Health and Social Affairs of Georgia of 16.08.2001 (No. №38/N). Legislative Herald of Georgia (in Georgian).

  • Oremland, R. S., & Stolz, J. F. (2003). The ecology of arsenic. Science, 300(5621), 939–944.

    CAS  Google Scholar 

  • Oremland, R. S., Stolz, J. F., & Hollibaugh, J. T. (2004). The microbial arsenic cycle in mono Lake, California. FEMS Microbiology Ecology, 48(1), 15–27.

    CAS  Google Scholar 

  • OSCE, UNEP, ENVSEC, Ministry of Environment and Natural Resources Protection. (2014). Addressing emergency environmental and security threats at the arsenic mining and processing sites in Tsana, Georgia. Final Report.

  • Özyiğit, İ. İ., & Doğan, İ. (2014). Plant-microbe interactions in phytoremediation. In K. R. Hakeem, M. Sabir, M. Ozturk, & A. R. Mermut (Eds.), Soil remediation and plants: Prospects and challenges (pp. 255–285). Cambridge, Massachusetts: Academic Press.

    Google Scholar 

  • Qin, X., Emerson, J., Stapp, J., Stapp, L., Abe, P., & Burns, J. L. (2003). Use of real-time PCR with multiple targets to identify Pseudomonas aeruginosa and other nonfermenting gram-negative bacilli from patients with cystic fibrosis. Journal of Clinical Microbiology, 41, 4312–4317.

    CAS  Google Scholar 

  • Schraft, H., & Griffiths, M. W. (1995). Specific oligonucleotide primers for detection of lecithinase-positive Bacillus spp. by PCR. Applied and Environmental Microbiology, 61, 98–102.

    CAS  Google Scholar 

  • Schwarzenbach, R. P., Egli, T., Hofstetter, T. B., Von Gunten, U., & Wehrli, B. (2010). Global water pollution and human health. Annual Review of Environment and Resources, 35, 109–136.

    Google Scholar 

  • Seliger, H. (2007). Introduction. Array technology – An overview. In J. B. Rampal (Ed.), Microarrays: Volume I: Synthesis methods (pp. 1–36). Totowa, New Jersey: Humana Press.

    Google Scholar 

  • Shavliashvili, L., Bakradze, E., Arabidze, M., & Kuchava, G. (2017). Arsenic pollution study of the rivers and soils in some of the regions of Georgia. International Journal of Current Research, 9, 47002–47008.

    CAS  Google Scholar 

  • Shumilova, M. A. (2012). Arsenic determination methods in environmental samples. Vestnik Udmurtskogo Universiteta, Physics and Chemistry, 4(4), 69–74 (in Russian).

    Google Scholar 

  • Singh, B., & Singh, K. (2016). Bacillus: As Bioremediator agent of major environmental pollutants. In M. Islam, M. Rahman, P. Pandey, C. Jha, & A. Aeron (Eds.), Bacilli and Agrobiotechnology (pp. 35–55). Berlin: Springer. https://doi.org/10.1007/978-3-319-44409-3_2.

    Google Scholar 

  • Slyemi, D., & Bonnefoy, V. (2011). How prokaryotes deal with arsenic. Environmental Microbiology Reports, 4(6), 571–586.

    Google Scholar 

  • Stankovic, S., Kalaba, P., & Stankovic, A. R. (2014). Biota as toxic metal indicators. Environmental Chemistry Letters. https://doi.org/10.1007/s10311-013-0430-6.

  • Stigliani, W. M., Doelman, P., Salomons, W., Schulin, R., Smidt, G. R., & Van der Zee, S. E. (1991). Chemical time bombs: Predicting the unpredictable. Environment: Science and Policy for Sustainable Development, 33(4), 4–30.

    Google Scholar 

  • Surriya, O., Saleem, S. S., Waqar, K., & Kazi, A. G. (2014). Phytoremediation of soils: Prospects and challenges. In K. R. Hakeem, M. Sabir, M. Ozturk, & A. Murmet (Eds.), Soil remediation and plants: Prospects and challenges (pp. 1–36). Cambridge, Massachusetts: Academic Press.

    Google Scholar 

  • Tomalia, D. A. (2004). Birth of a new macromolecular architecture: Dendrimers as quantized building blocks for nanoscale synthetic organic chemistry. Aldrichimica Acta, 37, 39–57.

    CAS  Google Scholar 

  • Tsai, S. L., Singh, S., & Chen, W. (2009). Arsenic metabolism by microbes in nature and the impact on arsenic remediation. Current Opinion in Biotechnology, 20(6), 659–667.

    CAS  Google Scholar 

  • van Waasbergen, L. G., Balwill, D. L., Crocker, F. H., Bjornstad, B. N., & Miller, R. V. (2000). Genetic diversity among Arthrobacter species collected across a heterogeneous series of terrestrial deep-subsurface sediments as determined on the basis of 16S rRNA and recA gene sequences. Applied and Environmental Microbiology, 66, 3454–3463.

    Google Scholar 

  • VROM. (2000). Streefwaarden en interventiewaarden bodemsanering, Staatstcourant 24 Februari 2000 (No. 39/8) (in Dutch).

  • Wei, B., & Yang, L. (2010). A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal, 94(2), 99–107.

    CAS  Google Scholar 

  • Witteveen+Bos. (2012). Arsenic containing mine wastes in Georgia. NL Agency, NL EVD International PSO Environment.

  • Yadav, K. K., Gupta, N., Kumar, A., Reece, L. M., Singh, N., Rezania, S., & Khan, S. A. (2018). Mechanistic understanding and holistic approach of phytoremediation: A review on application and future prospects. Ecological Engineering. https://doi.org/10.1016/j.ecoleng.2018.05.039.

  • Zheng, T., Wang, J., Wang, Q., Nie, C., Smale, N., Shi, Z., & Wang, X. (2015). A bibliometric analysis of industrial wastewater research: Current trends and future prospects. Scientometrics, 105(2), 863–882.

    Google Scholar 

  • Zinkevich, V., & Beech, I. B. (2000). Screening of sulfate-reducing bacteria in colonoscopy samples from healthy and colitic human gut mucosa. FEMS Microbiology Ecology, 34, 147–155.

    CAS  Google Scholar 

  • Zinkevich, V., Sapojnikova, N., Mitchell, J., Kartvelishvili, T., Asatiani, N., Alkhalil, S., Bogdarina, I., & Al-Humam, A. A. (2014). A novel cassette method for probe evaluation in the designed biochips. PLoS One, 9(6), e98596. https://doi.org/10.1371/journal.pone.0098596.

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge warmly our colleagues for the support and assistance: Professor Tengiz Urushadze, Head of Michail Sabashvili Institute of Soil Science, Agrochemistry and Melioration, Agricultural University of Georgia, for the guidance in the sphere of soil sciences and characterization of the sampling sites; Professor Guram Gioshvili, Professor George Adamia, and MSc Mirian Makadze for the assistance in the framework of the project.

Funding

This work was supported by grants (#2016–39) from Shota Rustaveli National Science Foundation (SRNSF) and (#6304) from the Science and Technology Center in Ukraine (STCU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelly Sapojnikova.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bunin, E., Khatisashvili, G., Varazi, T. et al. Study of Arsenic-Contaminated Soil Bacterial Community Using Biochip Technology. Water Air Soil Pollut 231, 198 (2020). https://doi.org/10.1007/s11270-020-04575-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04575-1

Keywords

Navigation