Skip to main content
Log in

Cellulose Microfibres Obtained from Agro-Industrial Tara Waste for Dye Adsorption in Water

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Microfibres of cellulose were extracted from tara residues (TR), obtained after the production process, and used to remove dyes in aqueous solution. Caesalpinia spinosa (Molina) Kuntze or Tara spinosa, commonly known as tara, is a thorny shrub native to Peru. For these purposes, tara residues (TR) from the production process are used to extract cellulose microfibres (CMF). First, TR are treated in basic mediums; then, they are transferred to an acidic medium. Finally, they are ground in a cutting mill for a short period of time. Scanning electron microscopy was used to characterize CMF. Fibre sizes of approximately 10 μm in length and 300–500 nm in diameter were observed. The crystallinity index calculated from X-ray patterns was defined at 77%. Infrared spectroscopy showed that treating TR with chemical products produces TR delignification. The dye adsorption tests (basic yellow, basic blue 41, basic blue 9 and basic green 4) in water demonstrated that isotherms adjust to the Langmuir model, with maximum respective adsorption values of 43.6, 45.5, 75.0 and 112.2 mg.g−1 for each dye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alemdar, A., & Sain, M. (2008). Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Composites Science and Technology, 68, 557–565.

    Article  CAS  Google Scholar 

  • Anbia, M., & Salehi, S. (2012). Removal of acid dyes from aqueous media by adsorption onto amino-functionalized nanoporous sílica SBA-3. Dyes and Pigments, 94, 1–9.

    Article  CAS  Google Scholar 

  • Aseer, J. R., Sankaranarayanasamy, K., Jayabalan, P., Natarajan, R., & Priya, D. K. (2013). Morphological, physical, and thermal properties of chemically treated banana fiber. Journal of Natural Fibers, 10, 365–380.

    Article  Google Scholar 

  • Aulin, C., Gallstedt, M., & Lindstrom, T. (2010). Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose, 17(3), 559–574.

    Article  CAS  Google Scholar 

  • Azzaz, A. A., Jellali, S., Souissi, R., Ergaieg, K., & Bousselmi, L. (2017). Alkaline-treated sawdust as an effective material for cationic dye removal from textile effluents under dynamic conditions: breakthrough curve prediction and mechanism exploration. Environmental Science and Pollution Research, 24(22), 18240–18256.

    Article  CAS  Google Scholar 

  • Baradai, O. E., Beneventi, D., Alloin, F., Bongiovani, R., Bruas-Reverdy, N., Bultel, Y., & Chaussy, D. (2016). Microfibrillated cellulose based ink for eco-sustainable screen printed flexible electrode s in lithium ion batteries. Journal of Materials Science and Technology, 32(6), 566–572.

    Article  Google Scholar 

  • Belessi, V., Romanos, G., Boukos, N., Lambropoulou, D., & Trapalis, C. (2009). Removal of reactive Red 195 from aqueous solutions by adsorption on the surface of TiO2nanoparticles, Journal Hazard. Mater, 170(2–3) 836–844.

  • Carneiro, P. A., Umbuzeiro, G. A., Oliveira, D. P., & Zanoni, M. V. (2010). Assessment of water contamination caused by a mutagenic textile effluent/dye house effluent bearing disperses dyes. Journal of Hazardous Materials, 174(1–3), 694–699.

    Article  CAS  Google Scholar 

  • Chiappone, A., Nair, J. R., Gerbaldi, C., Bongiovanni, R., & Zeno, E. (2013). Nanoscale microfibrillated cellulose reinforced truly-solid polymer electrolytes for flexible, safe and sustainable lithium-based batteries. Cellulose, 20(5), 2439–2449.

    Article  CAS  Google Scholar 

  • De Gisi, S., Lofrano, G., Grassi, M., & Notarnicola, M. (2016). Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review. Sustainable Materials and Technologies, 9, 10–40.

    Article  Google Scholar 

  • Deng, S., Ma, J., Guo, Y., Chen, F., & Fu, Q. (2018). One-step modification and nanofibrillation of microfibrillated cellulose for simultaneously reinforcing and toughening of poly(epsilon-caprolactone). Composites Science and Technology, 157, 168–177.

    Article  CAS  Google Scholar 

  • Dos Santos, L., Oliveira, J., Delano, R., Soares, M., Lustosa, F., Anteveli, J., & Cavalcanti, E. (2018). Potential of cellulose functionalized with carboxylic acid as biosorbent for the removal of cationic dyes in aqueous solution. Molecules Apr., 23(4), 743.

    Article  Google Scholar 

  • Faruk O., Sain M. (Editors). Lignin in polymer composites. William Andrew (2016).

  • Fukuzumi, H., Saito, T., Iwata, T., Kumamoto, Y., & Isogai, A. (2009). Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules, 10, 162–165.

    Article  CAS  Google Scholar 

  • Ganesan, K., Dennstedt, A., Barowski, A., & Ratke, L. (2016). Design of aerogels, cryogels and xerogels of cellulose with hierarchical porous structures. Materials and Design, 92, 345–355.

    Article  CAS  Google Scholar 

  • Gebald, C., Wurzbacher, J. A., Tingaut, P., Zimmermann, T., & Steinfeld, A. (2011). Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environmental Science & Technology, 45(20), 9101–9108.

    Article  CAS  Google Scholar 

  • Gürses A., Açıkyıldız M., Güneş K., Gürses M.S., Dyes and pigments, springer briefs in green chemistry for sustainability. 2016.

  • Hadzich A., Flores S., Caprari J., Romagnoli R., Progress in organic coatings 117, 35–46(2018).

  • Haiping, Y., Yan, R., Chen, H., Ho, L. D., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86, 1781–1788.

    Article  Google Scholar 

  • Hallac, B. B., & Ragauskas, A. J. (2011). Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol. Biofuels, Bioprod. Bioref., 5, 215–225.

    Article  CAS  Google Scholar 

  • He Y., Pang Y., Liu Y., Li X., And Wang. K., Physicochemical characterization of rice straw pretreated with sodium hydroxide in the solid state for enhancing biogas production. Energy & Fuels 22: 2775–2781 (2008).

  • Heitner C., Dimmel D., Schmidt J. (Editors). Lignin and lignans. Advances in Chemistry. CRC Press, (2010).

  • Kentaro A., Hiroyuki Y., Comparison of the characteristics of cellulose microfibril aggregates isolated from fibre and parenchyma cells of Moso bamboo (Phyllostachys pubescens). Volume 17, Issue 2, pp 271–277, (2009).

  • Lang, A. R. (Ed.). (2008). Dyes and pigments: new research. Nova science publishers, Inc.

  • Lavoine, N., Desloges, I., Dufresne, A., & Bras, J. (2012). Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydrate Polymers, 90(2), 735–764.

    Article  CAS  Google Scholar 

  • Martel, C., Rojas, N., Marın, M., Aviles, R., Neira, E., & Santiago, J. (2014). Caesalpinia spinosa (Caesalpiniaceae) leaves: anatomy, histochemistry, and secondary metabolites. Brazilian Journal of Botany, 37(2), 167–174.

  • Mustafa, T. Y., Kanti, S. T., Sharmeen, A., & Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: a review. Advances in Colloid and Interface Science.

  • Nascimento, D. M., Nunes, Y. L., Figueirêdo, M. C. B., de Azeredo, H. M. C., Aouada, F. A., Feitosa, J. P. A., Rosa, M. F., & Dufresne, A. (2018). Nanocellulose nanocomposite hydrogels: technological and environmental issues. Green Chem, 00, 1–3.

    Google Scholar 

  • Park, S., Baker, J. O., Himmel, M. E., Parilla, P. A., & Johnson, D. K. (2010). Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels, 3, 10.

    Article  Google Scholar 

  • Patil, S., Renukdas, S., & Patel, N. (2011). Removal of methylene blue, a basic dye from aqueous solutions by adsorption using teak tree (Tectona grandis) bark powder. International Journal of Environmental Sciences, 1(5), 711–726.

    CAS  Google Scholar 

  • Pei, Y., Wu, X., Xu, G., Chen, M., Zhang, Z., & Zheng, X. (2018). Activated carbon-entrapped microfibrilated cellulose films as an effective adsorbent for removing organic dye from aqueous effluent. Journal of Wood Chemistry and Technology, 38(1), 15–27.

    Article  CAS  Google Scholar 

  • Reddy, K. O., Maheswari, C. U., Reddy, D. J. P., Guduri, B. R., & Rajulu, A. V. (2010). Properties of ligno-cellulose ficus religiosa leaf fiber. International Journal of Polymers and Technologies, 2, 29–35.

    Google Scholar 

  • Reddy, K. O., Maheswari, C. U., Mukul, S., Song, I., & Rajulu, A. V. (2013). Tensile and structural characterization of alkali treated borassus fruit fine fibers. Composites: Part B, 44, 433–438.

  • Romero I., Producción y comercio de Tara en el Perú. Ministerio de Agricultura y Riego, 2019.

    Google Scholar 

  • Sánchez-Martín, J., Beltrán-Heredia, J., & Gragera-Carvajal, J. (2011). Caesalpinia spinosa and Castanea sativa tannins: a new source of biopolymers with adsorbent capacity. Preliminary assessment on cationic dye removal. Industrial Crops and Products, 34, 1238–1240.

    Article  Google Scholar 

  • Shore J. (Editor). Colorants and auxiliaries: organic chemistry and applications properties. Vol.2, (2002).

  • Singh, B. K., & Rawat, N. S. (1994). Comparative sorption kinetic studies of phenolic compounds on fly ash and impregnated fly ash. Journal of Chemical Technology and Biotechnology, 61, 57–65.

    Article  CAS  Google Scholar 

  • Singha, A. S., Thakur, V. K., Mehta, I. K., Shama, A., Khanna, A. J., Rana, R. K., & Rana, A. K. (2009). Surface-modified hibiscus sabdariffa fibers: physicochemical, thermal, and morphological properties evaluation. International Journal of Polymer Analysis Characterization, 14, 695–711.

    Article  CAS  Google Scholar 

  • Skowyra, M., Janiewicz, U., Salejda, A., Krasnowska, G., & Almajano, M. (2015). Antioxidant effects of tara pod in meat. Food Technology and Biotechnology, 53(4), 419–427.

    CAS  Google Scholar 

  • Sun, X. F., Xu, F., Sun, R. C., Fowler, P., & Baird, M. S. (2005). Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydrate Research, 340, 97–106.

    Article  CAS  Google Scholar 

  • Syafri E., Jamaluddin, Wahono S., Mochamad Asrofi I. A., Sari N. H. and Fudholi A.,Characterization and properties of cellulose microfibers from water hyacinth filled sago starch biocomposites; International Journal of Biological Macromolecules 137, 119–125 (2019).

  • Tanpichai, S., Witayakran, S., & Boonmahitthisud, A. (2018). Study on structural and thermal properties of cellulose microfibers isolated from pineapple leaves using steam explosion. Journal of Environmental Chemical Engineering. https://doi.org/10.1016/j.jece.2018.102836.

  • Tomczak, E., Kaminski, W., & Blus, M. (2016). Adsorption of azo dyes onto a corncob in packed column at the constant velocity of front propagation. Desalination and Water Treatment, 57(48–49), 22788–22793.

    Article  CAS  Google Scholar 

  • Tran, H. N., You, S.-J., Hosseini-Bandegharaei, A., & Chao, H.-P. (2017). Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Research.

  • Turbak, A. F., Snyder, F. W., & Sandberg, K. R. (1983). Microfibrillated cellulose, a new cellulose product: properties, uses and commercial potential. J. Appl. Polym. Sci.: Appl. Polym. Symp., 37, 815–827.

    CAS  Google Scholar 

  • Vartiainen, J., Pöhler, T., Sirola, K., Pylkkänen, L., Alenius, H., & Hokkinen, J. (2011). Health and environmental safety aspects of friction grinding and spray drying of microfibrillated cellulose. Cellulose, 18(3), 775–786.

    Article  CAS  Google Scholar 

  • Veritrade corp (2019) https://www.veritradecorp.com.

  • Voisin, H., Bergström, L., Liu, P., & Mathew, A. P. (2017). Nanocellulose-based materials for water purification. Nanomaterials, 7, 57.

    Article  Google Scholar 

  • Werner K., Pommer L., Broström M., Thermal decomposition of hemicelluloses, J. Anal. Appl. Pyrol., (2014).

    Book  Google Scholar 

  • Worch E., Adsorption technology in water treatment, Fundamentals, Processes and Modeling Ed. Walter de Gruyter (2012).

  • Wu, C. (2007). Adsorption of reactive dyes onto carbon nanotubes: equilibrium, kinetics and thermodynamics. Journal of Hazardous Materials, 144, 93–100.

    Article  CAS  Google Scholar 

  • Wu, Y., Ding, W., Jia, L., & He, Q. (2015). The rheological properties of tara gum (Caesalpinia spinosa). Food Chemistry, 168, 366–371.

  • Yanbei, W., Wei, D., Lirong, J., & Qiang, H. (2015). The rheological properties of tara gum (Caesalpinia spinosa). Food Chemistry, 168, 366–371.

    Article  Google Scholar 

  • Yu, Z., Hu, C., Dichiara, A. B., Jiang, W., & Gu, J. (2020). Cellulose nanofibril/carbon nanomaterial hybrid aerogels for adsorption removal of cationic and anionic organic dyes. Nanomaterials, 10, 169. https://doi.org/10.3390/nano10010169.

    Article  CAS  Google Scholar 

  • Zhang, F., Chen, Y., Lin, H., et al. (2007). Synthesis of an amino-terminated hyperbranched polymer and its application in reactive dyeing on cotton as a salt-free dryeing auxiliary. Coloration Technology, 123, 351–357.

    Article  CAS  Google Scholar 

  • Zolin, L., Nair, J. R., Beneventi, D., Bella, F., Destro, M., & Jagdale, P. (2016). A simple route to-ward next-gen green energy storage concept by nanofibres-based self-supporting electrodes and a solid polymeric design. Carbon, 107, 811–822.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

These authors gratefully acknowledge research centre of Institute of Scientific Research (IDIC) of the University of Lima for the support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Ponce.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Statement of Novelty

Waste from tara agro-industry was used to obtain, by a chemical-physical method, microfibres that were used in the removal of cationic dyes in water.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponce, S., Chavarria, M., Norabuena, F. et al. Cellulose Microfibres Obtained from Agro-Industrial Tara Waste for Dye Adsorption in Water. Water Air Soil Pollut 231, 518 (2020). https://doi.org/10.1007/s11270-020-04889-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04889-0

Keywords

Navigation