Skip to main content
Log in

Identification and characterization of antifungal active substances of Streptomyces hygroscopicus BS-112

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

An antifungal Actinomyces BS-112 strain, with Aspergillus flavus as the target pathogen, was isolated from soil in the forest land of Mountain Tai. This strain showed a strong antagonistic activity against various mold fungi in food and feed. Strain BS-112 was identified as Streptomyces hygroscopicus based on its morphologic, cultural, physiological, biochemical characteristics, cell wall components and 16S rDNA sequence. Four active components were separated and purified from strain BS-112. These four antifungal components were identified as tetrins A and B and tetramycins A and B using spectroscopic analysis including mass spectrometry and nuclear magnetic resonance spectroscopy. Tetrins A and B and tetramycins A and B strongly inhibited the growth of A. flavus, A. alutaceus, A. niger, and A. fumigatus in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ashok K, Ravindra S, Priyanka S, Nawal KD (2010) Chemical composition, antifungal and antiaflatoxigenic activities of Ocimum sanctum L. essential oil and its safety assessment as plant based antimicrobial. Food Chem Toxicol 48(2):539–543

    Article  Google Scholar 

  • Dornberger K, Thruma H, Radics L (1979) The structure of tetramycin, a new polyene macrolide antibiotic. Tetrahedron 35(15):1852–1856

    Article  Google Scholar 

  • Drancourt MC, Bollet A, Carlioz R, Martelin JP, Gayral RD (2000) 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. J Clin Microbiol 38(10):3623–3630

    CAS  Google Scholar 

  • Eduardo S, Norma H, Santos G (2005) Inhibition of growth and mycotoxin production of Aspergillus flavus and Aspergillus parasiticus by extracts of Agave species. Int J Food Microbiol 98(3):271–279

    Article  Google Scholar 

  • Gottlieb D, Pote HL (1960) Tetrin, an antifungal antibiotic. Phytopathology 50(11):817

    CAS  Google Scholar 

  • Group of Actinomycetes Taxonomy Institute of Microbiology Chinese Academy of Science (1975) Identifying manual of Streptomycetes. Science Press, Beijing, pp 3–15

    Google Scholar 

  • Hu YL, Zhang HL, Zong YL, Zhang XH, Bao XF, Chen S, Wang Z (1995) Study on mutation breeding of Wuningmeisu producing strain. J Microbiol 15(2):40–44

    Google Scholar 

  • IARC (1993) IARC monographs on the evaluation of carcinogenic risks to humans: some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. Int Agency Res Cancer (Lyon) 56:489–521

    Google Scholar 

  • Kelly KL (1964) Inter-society color council-national bureau of standards color-name charts illustrated with centroid colors. US Government Printing Office, Washington, DC

    Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. The John Innes Foundation, Norwich, pp 161–167

  • Lechevalier HA, Lechevalier MP (1970a) A critical evaluation of the genera of aerobic actinomycetes. In: Prauser H (ed) The Actinomycetes. Gustav Fischer Verlag, Jena, pp 393–405

  • Lechevalier MP, Lechevalier HA (1970b) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20(4):435–443

    Article  CAS  Google Scholar 

  • Lechevalier MP, Lechevalier HA (1980) The chemotaxonomy of actinomycetes. In: Dietz A, Thayer DW (eds) Actinomycete taxonomy. Society for Industrial Microbiology, Virginia, pp 22–291

    Google Scholar 

  • Levinskas GJ, Ribelin WE, Shaffer CB (1996) Acute and chronic toxicity of pimaricin. Toxicol Appl Pharmacol 8(1):97–109

    Article  Google Scholar 

  • Liang JL, Xu ZN, Liu TF, Lin JP, Cen PL (2008) Effects of cultivation conditions on the production of natamycin with Streptomyces gilvosporeus LK-196. Enzyme Microb Tech 42(2):145–150

    Article  CAS  Google Scholar 

  • Lin N, Li W, Sha Y, He JY, Jiang QH, Li X (2008) Structure elucidation of polyene macrol ide antibiotic lucensomycin. Chinese J Magn Reson 25(4):514–522

    Google Scholar 

  • Mandel M, Marmur J (1968) Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206

    Article  Google Scholar 

  • Martin JF (1977) Biosynthesis of polyene macrolide antibiotics. Ann Rev Microbial 31:13–38

    Article  CAS  Google Scholar 

  • Mignard S, Flandrois JP (2006) 16S rRNA sequencing in routine bacterial identification: a 30-month experiment. J Microbiol Methods 67(3):574–581

    Article  CAS  Google Scholar 

  • Mishra HN, Das C (2003) A review on biological control and metabolism of aflatoxin. Crit Rev Food Sci Nutr 43(3):245–264

    Article  CAS  Google Scholar 

  • National Pharmacopoeia Committee (2005) Pharmacopoeia of the people’s Republic of China (Part II). Chemical Industry Press, Beijing, pp 181–182

    Google Scholar 

  • NCCLS (2002) Reference method for broth dilution antifungal susceptibility testing of filamentous fungi. Approved Standard M38-A. Wayne, PA

  • Norner JW (2004) Biological control of aflatoxin contamination of crops. J Toxicol Toxin Rev 23(2):425–450

    Google Scholar 

  • Pandey RC, German VF, Nishikawa Y, Rinehart KL (1971) Polyene antibiotics. II. The structure of Tetrin A. J Am Chem Soc 93(15):3738–3747

    Article  CAS  Google Scholar 

  • Radics L, Incze M, Dornberger K, Thruma H (1982) Tetramycin B, a new polyene macrolide antibiotic: the structure of tetramycins A and B as studied by high-field NMR spectroscopy. Tetrahedron 38(1):183–189

    Article  CAS  Google Scholar 

  • Ren BJ, Li YH (1996) Control of Valda mail with Wuning-mycin. Chin J Biol Control 2:89

    Google Scholar 

  • Rinehart KL, German VF, Tucker WP (1963) Isolierung und eigenschaften der Tetrine A und B. Justus Liebigs Annalen der Chemie 688(1):77–86

    Google Scholar 

  • Rinehart KL, Tucker WP, Pandey RC (1971) Polyene antibiotics. III. The structure of tetrin B. J Am Chem Soc 93(15):3747–3751

    Article  CAS  Google Scholar 

  • Ryu G, Choi WC, Hwang SJ, Yeo WH, Lee CS, Kim SK (1999) Tetrin C, a new glycosylated polyene macrolide antibiotic produced by Streptomyces sp. GK9244. J Nat Prod 62(6):917–919

    Article  CAS  Google Scholar 

  • Sader HS, Becker HK, Moet GJ, Jones RN (2010) Antimicrobial activity of daptomycin tested against Staphylococcus aureus with vancomycin MIC of 2 μg/mL isolated in the United States and European hospitals (2006–2008). Diagn Microbiol Infect Dis 66(3):320–331

    Article  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces sp. Int J Syst Bacteriol 16(3):313–340

    Article  Google Scholar 

  • Song Z, Liu QX, Guo H, Ju RC, Zhao YH, Li JY, Liu XL (2012) Tostadin, a novel antibacterial peptide from an antagonistic microorganism Brevibacillus brevis XDH. Bioresour Technol 111:504–506

    Article  CAS  Google Scholar 

  • Sun QH, Cui SY, Li AP, Done F, Chen L (2005) Study on ant putrefactive and bacteriostatic efficacy of natamycin. Chin J Disinfect 22(4):435–436

    CAS  Google Scholar 

  • Tang W, Zhang CX (2010) Study on the high yield breeding of tetramycin strain. J Liaoning Agric Coll 12(5):1–4

    Google Scholar 

  • Van Etten JL, Gottlieb D (1967) Studies on the mode of action of Tetrin A. J General Microbiol 46(3):377–387

    Article  Google Scholar 

  • Vilar VJP, Botelho CMS, Boaventura RAR (2006) Equilibrium and kinetic modeling of Cd(II) biosorption by algae Gelidium and agar extraction algal waste. Water Res 40:291–302

    Article  CAS  Google Scholar 

  • Volpon L, Lancelin JM (2002) Solution NMR structure of five representative glycosylated polyene macrolide antibiotics with a sterol-dependent antifungal activity. Eur J Biochem 269(18):4533–4541

    Article  CAS  Google Scholar 

  • Wang ZW, Liu XL (2007) Medium optimization for antifungal active substances production from a newly isolated Paenibacillus sp. using response surface methodology. Bioresour Technol 99(17):8245–8521

    Article  Google Scholar 

  • Williams ST, Goodfellow M, Alderson G, Wellington EMH, Sneath PHA, Sakin MJ (1983) Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:174–1813

    Google Scholar 

  • Zhang N (2010) Fermentation of Streptomyces hygroscopicus BS-112 and its antibiotic substances purification and characterization. Shandong Agricultural University, Shandong, pp 165–169 (data not shown)

  • Zhang T, Shi ZQ, Hu LB, Cheng LG, Wang F (2008) Antifungal compounds from Bacillus subtilis B-FS06 inhibiting the growth of Aspergillus flavus. World J Microbiol Biotechnol 24(6):783–788

    Article  CAS  Google Scholar 

  • Zhang N, Qi ZM, Duan HG, Xie YH, Yu J, Lu CX, Liu XL (2012) Optimization of medium composition for production of antifungal active substance from Streptomyces hygroscopicus BS-112. Afr J Microbiol Res 6(1):71–80

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xunli Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, N., Song, Z., Xie, Y. et al. Identification and characterization of antifungal active substances of Streptomyces hygroscopicus BS-112. World J Microbiol Biotechnol 29, 1443–1452 (2013). https://doi.org/10.1007/s11274-013-1307-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1307-3

Keywords

Navigation