Skip to main content
Log in

Temperature-stress tolerance of the fungal strain Aspergillus niger 26: physiological and ultrastructural changes

  • Short Communication
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The study focuses on the morphological and physiological cell responses to oxidative stress induced by high temperature treatment in the industrially relevant fungus Aspergillus niger 26. Temperatures above 30 °C lead to growth suppression and changes in morphological characteristics: decrease in the size of hyphal elements and increase in “active length” by switching from slightly branched long filaments to a multitude of branched forms containing active cytoplasm. Transmission electron microscopy of fungal cultures heated at 40 °C demonstrated abnormal wavy septation with reduced amount of chitin (as shown by WGA-gold labelling), intrahyphal hyphae development, disintegration of mitochondria and extensive autolysis. Temperature-dependent decrease in the total intracellular protein content and a sharp increase (six to tenfold) in oxidatively damaged proteins were also demonstrated. Elevated temperatures caused a two and threefold increase in catalase and superoxide dismutase activities, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Abrashev R, Dolashka P, Christova R, Stefanova L, Angelova M (2005) Role of antioxidant enzymes in survival of conidiospores of Aspergillus niger 26 under conditions of temperature stress. J Appl Microbiol 99:902–909. doi:10.1111/j.1365-2672.2005.02669.x

    Article  CAS  Google Scholar 

  • Abrashev RI, Pashova SP, Stefanova LN, Vassilev SV, Dolashka-Angelova PA, Angelova MB (2008) Heat-shock-induced oxidative stress and antioxidant response in Aspergillus niger 26. Can J Microbiol 54:977–983. doi:10.1139/W08-091

    Article  CAS  Google Scholar 

  • Aggarwal A, Ashutosh A, Chandra G, Singh AK (2012) Heat shock protein 70, oxidative stress, and antioxidant status in periparturient crossbred cows supplemented with α-tocopherol acetate. Trop Anim Health Prod 45:239–245. doi:10.1007/s11250-012-0196-z

    Article  Google Scholar 

  • Bai Z, Harvey LM, McNeil B (2003) Oxidative stress in submerged cultures of fungi. Crit Rev Biotechnol 23:267–302. doi:10.1080/07388550390449294

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assay and an assay applicable to polyacrylamide gels. Anal Biochem 44:276–287. doi:10.1016/0003-2697(71)90370-8

    Article  CAS  Google Scholar 

  • Beers RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    CAS  Google Scholar 

  • Boyce KJ, Hynes MJ, Andrianopoulos A (2003) Control of morphogenesis and actin localization by the Penicillium marneffei RAC homolog. J Cell Sci 116:1249–1260. doi:10.1242/jcs.00319

    Article  CAS  Google Scholar 

  • Emri T, Molnár Z, Pusztahelyi T, Rosén S, Pócsi I (2004) Effect of vitamin E on autolysis and sporulation of Aspergillus nidulans. Appl Biochem Biotechnol 118:337–348. doi:10.1385/ABAB:118:1-3:337

    Article  CAS  Google Scholar 

  • Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112. doi:10.1146/annurev.bi.64.070195.000525

    Article  CAS  Google Scholar 

  • Fukuda K, Yamada K, Deoka K, Yamashita S, Ohta A, Horiuchi H (2009) Class III chitin synthase ChsB of Aspergillus nidulans localizes at the sites of polarized cell wall synthesis and is required for conidial development. Eukaryot Cell 8:945–956. doi:10.1128/EC.00326-08

    Article  CAS  Google Scholar 

  • Harris SD, Read ND, Roberson RW, Shaw B, Seiler S, Plamann M, Momany M (2005) Polarisome meets Spitzenkörper: microscopy, genetics, and genomics converge. Eukaryot Cell 4:225–229. doi:10.1128/EC.04.2.225-229.2005

    Article  CAS  Google Scholar 

  • Kreiner M, McNeil B, Harvey LM (2000) Oxidative stress response in submerged cultures of a recombinant Aspergillus niger (B1-D). Biotechnol Bioeng 70:662–669. doi:10.1016/S0141-0229(01)00517-8

    Article  CAS  Google Scholar 

  • Kreiner M, Harvey LM, McNeil B (2003) Morphological and enzymatic responses of a recombinant Aspergillus niger to oxidative stressors in chemostat cultures. J Biotechnol 100:251–260. doi:10.1016/S0168-1656(02)00245-6

    Article  CAS  Google Scholar 

  • Krumova E, Stoitsova SR, Paunova-Krasteva T, Pashova S, Angelova M (2012) Copper stress and filamentous fungus Humicola lutea 103 - ultrastructural changes and activities of key metabolic enzymes. Can J Microbiol 58:1335–1343. doi:10.1139/w2012-112

    Article  CAS  Google Scholar 

  • Kumar S, Kalyanasundaram GT, Gummadi SN (2011) Differential response of the catalase, superoxide dismutase and glycerol-3-phosphate dehydrogenase to different environmental stresses in Debaryomyces nepalensis NCYC 3413. Curr Microbiol 62:382–387. doi:10.1007/s00284-010-9717-z

    Article  CAS  Google Scholar 

  • Li Q, Harvey LM, McNeil B (2009) Oxidative stress in industrial fungi. Crit Rev Biotechnol 29:199–213. doi:10.1080/07388550903004795

    Article  CAS  Google Scholar 

  • Lowry OH, Rosenbrough HJ, Faar AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Martín-Urdíroz M, Roncero MIG, González-Reyes JA, Ruiz-Rodán C (2008) ChsVb, a class VII chitin synthase involved in septation, is critical for pathogenicity in Fusarium oxysporum. Eukaryot Cell 7:112–121. doi:10.1128/EC.00347-07

    Article  CAS  Google Scholar 

  • Morsy MR, Oswald J, He J, Tang Y, Roossinck MJ (2010) Teasing apart a three-way symbiosis: transcriptome analyses of Curvularia protuberata in response to viral infection and heat stress. Biochem Biophys Res Commun 401:225–230. doi:10.1016/j.bbrc.2010.09.034

    Article  CAS  Google Scholar 

  • O’Donnell A, Harvey LM, McNeil B (2011) The roles of the alternative NADH dehydrogenases during oxidative stress in cultures of the filamentous fungus Aspergillus niger. Fungal Biol 115:359–369. doi:10.1016/j.funbio.2011.01.007

    Article  CAS  Google Scholar 

  • Papagianni M, Mattey M, Kristiansen B (1998) Citric acid production and morphology of Aspergillus niger as functions of the mixing intensity in a stirred tank and a tubular loop bioreactor. Biochem Eng J 2:197–205. doi:10.1016/S1369-703X(98)00032-1

    Article  CAS  Google Scholar 

  • Pena LB, Azpilicueta CE, Benavides MP, Gallego SM (2012) Protein oxidative modifications. In: Gupta DK, Sandalio LM (eds) Metal toxicity in plants: perception, signaling and remediation. Springer, Heidelberg, pp 207–226. ISBN 978-3-642-22081-4

    Chapter  Google Scholar 

  • Qin G, Liu J, Cao L, Li B, Tian S (2011) Hydrogen peroxide acts on sensitive mitochondrial proteins to induce death of a fungal pathogen revealed by proteomic analysis. PLoS ONE 6:e21945. doi:10.1371/journal.pone.0021945

    Article  CAS  Google Scholar 

  • Rogg LE, Fortwendel JR, Juvvadi PR, Lilley A, Steinbach WJ (2011) The chitin synthase genes chsA and chsC are not required for cell wall stress responses in the human pathogen Aspergillus fumigatus. Biochem Biophys Res Commun 411:549–554. doi:10.1016/j.bbrc.2011.06.180

    Article  CAS  Google Scholar 

  • Stoitsova S, Paunova T, Spasova B (2006) Localization of chitin in the cell wall of Aspergillus niger 26 and its changes in the course of hyphal differentiation. CR Acad Bulg Sci 59:955–958

    CAS  Google Scholar 

  • Takeshita N, Ohta A, Horiuchi H (2005) CsmA, a class V chitin synthase with a myosin motor-like domain, is localized through direct interaction with the actin cytoskeleton in Aspergillus nidulans. Mol Biol Cell 16:1961–1970. doi:10.1091/mbc.E04-09-0761

    Article  CAS  Google Scholar 

  • Thomas CR (1992) Image analysis: putting filamentous microorganisms in the picture. Trends Biotechnol. 10:343–348. doi:10.1016/0167-7799(92)90266-X

    Google Scholar 

  • Walker LA, Lenardon MD, Preechasuth K, Munro CA, Gow NAR (2013) Cell wall stress induces alternative fungal cytokinesis and septation strategies. J Cell Sci 126:2667–2668. doi:10.1242/jcs.118885

    Article  CAS  Google Scholar 

  • Wongwicharn A, McNeil B, Harvey LM (1999) Effect of oxygen enrichment on morphology, growth, and heterologous protein production in chemostat cultures of Aspergillus niger B1-D. Biotechnol Bioeng 65:416–424. doi:10.1002/(sici)1097-0290(19991120

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Angelova.

Additional information

Radoslav Abrashev and Stoyanka Stoitsova have contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abrashev, R., Stoitsova, S., Krumova, E. et al. Temperature-stress tolerance of the fungal strain Aspergillus niger 26: physiological and ultrastructural changes. World J Microbiol Biotechnol 30, 1661–1668 (2014). https://doi.org/10.1007/s11274-013-1586-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1586-8

Keywords

Navigation