Skip to main content
Log in

Covert communication with noise and channel uncertainties

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Covert communication is critical to guarantee a strong security and secure user privacy. In this work, we consider adversary’s noise and channel uncertainties and analyze their impact on adversary’s optimum detection performance and the throughput of covert messages. We determine the throughput of covert messages and its gain and loss by having adversary’s channel uncertainty and fading channel, respectively. The results show that fading is essential to hide information, particularly for low noise uncertainty or at high SNR. The improvement of adversary’s optimum detection performance, hence the covert throughput, under channel uncertainty is more significant for larger noise uncertainty. The covert throughput is gained by having channel uncertainty roughly 12–19% when the noise uncertainty is about 1–2 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Hiding the covert information under existing transmissions in [9] will not be considered in this paper.

  2. \(E\{\cdot \}\) notates the expectation operator and \(x \sim \mathcal {CN}(0,\nu )\) indicates a complex Gaussian with mean 0 and variance \(\nu \).

References

  1. Ta, H. Q., & Kim, S. W. (2019). Covert communication under channel uncertainty and noise uncertainty. In IEEE international conference on communications (pp. 1–6).

  2. Yan, S., Zhou, X., Hu, J., & Hanly, S. V. (2019). Low probability of detection communication: Opportunities and challenges. IEEE Wireless Communications, 26, 19–25.

    Article  Google Scholar 

  3. Paar, C., & Pelzl, J. (2009). Understanding cryptography: A textbook for students and practitioners. Springer.

  4. Bloch, M., & Barros, J. (2011). Physical-layer security: From information theory to security engineering. Cambridge University Press.

  5. Simon, M. K., Omura, J. K., Scholtz, R. A., & Levitt, B. K. (1994). Spread spectrum communications handbook. McGraw-Hill Education.

  6. Bash, B. A., Goeckel, D., & Towsley, D. (2014). LPD communication when the warden does not know when. In: IEEE international symposium on information theory (pp. 606–610).

  7. Lee, S., Baxley, R. J., Weitnauer, M. A., & Walkenhorst, B. (2015). Achieving undetectable communication. IEEE Journal of Selected Topics in Signal Processing, 9, 1195–1205.

    Article  Google Scholar 

  8. Shahzad, K., & Zhou, X. (2020). Covert wireless communications under quasi-static fading with channel uncertainty. IEEE Transactions on Information Forensics and Security, 16, 1104–1116.

    Article  Google Scholar 

  9. Kim, S. W., & Ta, H. Q. (2020). Covert communication by exploiting node multiplicity and channel variations. In IEEE international conference on communications (pp. 1–6).

  10. Bash, B. A., Goeckel, D., & Towsley, D. (2013). Limits of reliable communication with low probability of detection on AWGN channels. IEEE Journal on Selected Areas in Communications, 31, 1921–1930.

    Article  Google Scholar 

  11. Bloch, M. R. (2016). Covert communication over noisy channels: A resolvability perspective. IEEE Transactions on Information Theory, 62, 2334–2354.

    Article  MathSciNet  Google Scholar 

  12. Wang, L., Wornell, G. W., & Zheng, L. (2016). Fundamental limits of communication with low probability of detection. IEEE Transactions on Information Theory, 62, 3493–3503.

    Article  MathSciNet  Google Scholar 

  13. Tahmasbi, M., & Bloch, M. R. (2018). First-and second-order asymptotics in covert communication. IEEE Transactions on Information Theory, 65, 2190–2212.

    Article  MathSciNet  Google Scholar 

  14. Yan, S., Cong, Y., Hanly, S. V., & Zhou, X. (2019). Gaussian signalling for covert communications. IEEE Transactions on Wireless Communications, 18, 3542–3553.

    Article  Google Scholar 

  15. Tandra, R., & Sahai, A. (2008). SNR walls for signal detection. IEEE Journal of selected topics in Signal Processing, 2, 4–17.

    Article  Google Scholar 

  16. He, B., Yan, S., Zhou, X., & Lau, V. K. N. (2017). On covert communication with noise uncertainty. IEEE Communications Letters, 21, 941–944.

    Article  Google Scholar 

  17. Soltani, R., Goeckel, D., Towsley, D., Bash, B., & Guha, S. (2018). Covert wireless communication with artificial noise generation. IEEE Transactions on Wireless Communications, 17, 7252–7267.

    Article  Google Scholar 

  18. Shu, F., Xu, T., Hu, J., & Yan, S. (2019). Delay-constrained covert communications with a full-duplex receiver. IEEE Wireless Communications Letters, 8, 813–816.

    Article  Google Scholar 

  19. Liu, Z. Liu, J., Zeng, Y., Ma, J., & Huang, Q. (2018). On covert communication with interference uncertainty. In IEEE international conference on communications (pp. 1–6).

  20. Sobers, T. V., Bash, B. A., Guha, S., Towsley, D., & Goeckel, D. (2017). Covert communication in the presence of an uninformed jammer. IEEE Transactions on Wireless Communications, 16, 6193–6206.

    Article  Google Scholar 

  21. Zheng, T.-X., Wang, H.-M., Ng, D. W. K., & Yuan, J. (2019). Multi-antenna covert communications in random wireless networks. IEEE Transactions on Wireless Communications, 18, 1974–1987.

    Article  Google Scholar 

  22. Cozzo, C., & Hughes, B. L. (2003). Joint channel estimation and data detection in space-time communications. IEEE Transactions on Communications, 51, 1266–1270.

    Article  Google Scholar 

  23. Wang, H., Li, X., Jhaveri, R. H., Gadekallu, T. R., Zhu, M., Ahanger, T. A., & Khowaja, S. A. (2021). Sparse Bayesian learning based channel estimation in FBMC/OQAM industrial IoT networks. Computer Communications, 176, 40–45.

    Article  Google Scholar 

  24. Zappone, A., & Jorswieck, E. (2015). Energy efficiency in wireless networks via fractional programming theory. Foundations and Trends in Communications and Information Theory, 11, 185–396.

    Article  Google Scholar 

  25. Abramowitz, M., & Stegun, I. A. (1965). Handbook of mathematical functions: With formulas, graphs, and mathematical tables (Vol. 55). Courier Corporation.

  26. Corless, R. M., Gonnet, G. H., Hare, D. E., Jeffrey, D. J., & Knuth, D. E. (1996). On the LambertW function. Advances in Computational mathematics, 5, 329–359.

    Article  MathSciNet  Google Scholar 

  27. Jhaveri, R. H., Tan, R., Easwaran, A., & Ramani, S. V. (2019). Managing industrial communication delays with software-defined networking. In IEEE international conference on embedded and real-time computing systems and applications (pp. 1–11).

  28. Cambini, A., & Martein, L. (2009). Generalized convexity and optimization: Theory and applications. Springer.

  29. András, S., & Baricz, Á. (2008). Properties of the probability density function of the non-central chi-squared distribution. Journal of Mathematical Analysis and Applications, 346, 395–402.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Khuong Ho-Van would like to thank Ho Chi Minh City University of Technology (HCMUT), VNU-HCM for the support of time and facilities for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khuong Ho-Van.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A part of the current paper was shown in [1]

Appendices

Appendix A

Equation (12) is derived in this “Appendix”:

$$\begin{aligned} \xi (\hat{g})&= 1 - \frac{\ln (\lambda )}{2 \ln (\alpha )} + \int _{\left( \frac{\lambda }{\hat{\sigma }_w^2} - \frac{1}{\alpha }\right) \frac{1}{\gamma }}^\infty \ln \left( \frac{\hat{\sigma }_w^2}{\alpha } \right) \frac{f_{X| \hat{g}}(x|\hat{g}) dx}{2 \ln (\alpha )} \\&\quad + \int _0^{\left( \frac{\lambda }{\hat{\sigma }_w^2} - \frac{1}{\alpha }\right) \frac{1}{\gamma }} \ln (\lambda - x P) \frac{f_{X| \hat{g}}(x|\hat{g}) dx}{2 \ln (\alpha )} \\&= 1 - \frac{\ln (\alpha \lambda /\hat{\sigma }_w^2)}{2\ln (\alpha )} \\&\quad + \int _0^{\left( \frac{\lambda }{\hat{\sigma }_w^2} - \frac{1}{\alpha }\right) \frac{1}{\gamma }} \ln \left( \frac{\lambda - x P}{\hat{\sigma }_w^2/\alpha }\right) \frac{f_{X| \hat{g}}(x|\hat{g}) dx}{2 \ln (\alpha )}. \end{aligned}$$
(48)
Fig. 9
figure 9

\(\eta _n/\eta _p\) varies with \(\epsilon \) for some \(\alpha \)

Appendix B

The pseudo-convexity of \(\xi (\hat{g})\) is proved in this “Appendix”. It follows from [28] that a function f(x) is strictly pseudo-convex if, for any value of \(x=x_0\) such that \(d f(x)/d x =0\), we have \(d^2 f(x)/d x^2 > 0\).

We have

$$\begin{aligned} 2\ln (\alpha ) \frac{d \xi (\hat{g})}{d\lambda } = - \frac{1}{\lambda } + \int _0^{\left( \frac{\lambda }{\hat{\sigma }_w^2} - \frac{1}{\alpha }\right) \frac{1}{\gamma }} \frac{f_{X| \hat{g}}(x|\hat{g}) dx}{\lambda - xP}, \end{aligned}$$
(49)

and

$$\begin{aligned} 2\ln (\alpha ) \frac{d^2 \xi (\hat{g})}{d\lambda ^2}&= \frac{1}{\lambda ^2} + \frac{\alpha }{\hat{\sigma }_w^2} f_{X| \hat{g}}\left( {\left[ \frac{\lambda }{\hat{\sigma }_w^2} - \frac{1}{\alpha }\right] \frac{1}{\gamma }} \bigg | \hat{g}\right) \\&\quad - \int _0^{\left( \frac{\lambda }{\hat{\sigma }_w^2} - \frac{1}{\alpha }\right) \frac{1}{\gamma }} \frac{P f_{X| \hat{g}}(x|\hat{g}) dx }{(\lambda - x P)^2} \\&> \frac{\alpha }{\hat{\sigma }_w^2} f_{X| \hat{g}} \left( {\left[ \frac{\lambda }{\hat{\sigma }_w^2} - \frac{1}{\alpha }\right] \frac{1}{\gamma }} \bigg | \hat{g}\right) \\&\quad - \int _0^{\left( \frac{\lambda }{\hat{\sigma }_w^2} - \frac{1}{\alpha }\right) \frac{1}{\gamma }} f_{X| \hat{g}}(x|\hat{g}) d\left( \frac{1}{\lambda - x P} \right) \\&= \frac{f_{X|\hat{g}}(0|\hat{g})}{\lambda } - \int _0^{\left( \frac{\lambda }{\hat{\sigma }_w^2} - \frac{1}{\alpha }\right) \frac{1}{\gamma }} \frac{f'_{X|\hat{g}}(x|\hat{g}) dx }{\lambda - x P}, \end{aligned}$$
(50)

respectively. Then, for any \(\lambda =\lambda _0\) such that

$$\begin{aligned} \frac{d \xi (\hat{g})}{d \lambda } \bigg |_{\lambda = \lambda _0}&= - \frac{1}{\lambda _0} + \int _0^{\left( \frac{\lambda _0}{\hat{\sigma }_w^2} - \frac{1}{\alpha }\right) \frac{1}{\gamma }} \frac{f_{X| \hat{g}}(x|\hat{g}) dx}{\lambda _0 - x P} \end{aligned}$$
(51)
$$\begin{aligned}&\quad \quad \quad = 0, \end{aligned}$$
(52)

it is inferred from (50) that

$$\begin{aligned} \frac{d^2 \xi (\hat{g})}{d \lambda ^2}\bigg |_{\lambda =\lambda _0}> & \int _0^{\left( \frac{\lambda _0}{\hat{\sigma }_w^2} - \frac{1}{\alpha }\right) \frac{1}{\gamma }} \frac{f_{X| \hat{g}}(x|\hat{g}) dx}{\lambda _0 - x P} \\&\times \left( f_{X|\hat{g}}(0|\hat{g}) -\frac{d(\ln f_{X| \hat{g}}(x|\hat{g}))}{dx} \right) . \end{aligned}$$
(53)

Since \(I_0(z) = \sum ^\infty _{k=0} (z/2)^{2k}/(k!)^2\), we obtain from (10),

$$\begin{aligned}&\frac{d(\ln f_{X| \hat{g}}(x|\hat{g}))}{dx} \\&= \frac{d\left( -\frac{x+|\hat{g}|^2}{\kappa \sigma _g^2}+\ln \left( \frac{1}{\kappa \sigma _g^2}\right) +\ln \left( I_0 \left( \frac{2|\hat{g}|}{\kappa \sigma _g^2} \sqrt{x} \right) \right) \right) }{dx} \\&= -\frac{1}{\kappa \sigma _g^2} + \frac{ \left( \sum ^\infty _{k=0} \frac{1}{(k!)^2} \frac{|\hat{g}|^{2k} x^k}{(\kappa \sigma _g^2)^{2k}} \right) '}{I_0 \left( \frac{2|\hat{g}|}{\kappa \sigma _g^2} \sqrt{x} \right) }, \end{aligned}$$
(54)

Due to the log-concavity of the non-central Chi-square [29], i.e. \((\ln (f_{X| \hat{g}}(x|\hat{g})))'' < 0\), (54) decreases with increasing x and hence, we obtain

$$\begin{aligned} f_{X|\hat{g}}(0|\hat{g}) -\frac{f'_{X|\hat{g}}(x|\hat{g})}{f_{X| \hat{g}}(x|\hat{g})}\ge & f_{X|\hat{g}}(0|\hat{g}) -\frac{f'_{X|\hat{g}}(x|\hat{g})}{f_{X| \hat{g}}(x|\hat{g})}\bigg |_{x=0} \\&= \frac{1}{\kappa \sigma _g^2} e^{-\frac{|\hat{g}|^2}{\kappa \sigma _g^2}}-\frac{1}{\kappa \sigma _g^2} \left( 1 - \frac{|\hat{g}|^2}{\kappa \sigma _g^2}\right) , \end{aligned}$$
(55)

which, since \(e^{-t} \ge 1-t\), yields \(f_{X|\hat{g}}(0|\hat{g}) \ge 0\). Hence, we obtain from (53) that \(d^2 \xi /d \lambda ^2|_{\lambda =\lambda _0} > 0\), yielding the pseudo-convexity of \(\xi (\hat{g})\).

Appendix C

In this “Appendix”, we derive (25). We have

$$\begin{aligned} \xi (0)&= 1 - \frac{\ln (\alpha \lambda /\hat{\sigma }_w^2)}{2\ln (\alpha )} - \frac{1}{2 \ln (\alpha )} \\&\times \int _0^{\left( \frac{\lambda }{\hat{\sigma }_w^2} - \frac{1}{\alpha }\right) \frac{1}{\gamma }} \ln \left( \alpha \left[ \frac{\lambda }{\hat{\sigma }_w^2} - x \gamma \right] \right) d\left( e^{-\frac{x}{\sigma _g^2}} \right) , \end{aligned}$$
(56)

which applying integration by part into (56) yields

$$\begin{aligned} \xi (0)&= 1 - \frac{\gamma \hat{\sigma }_w^2}{2\ln (\alpha )} \int _0^{\left( \frac{\lambda }{\hat{\sigma }_w^2} - \frac{1}{\alpha }\right) \frac{1}{\gamma }} \frac{e^{-x/\sigma _g^2} }{\lambda -x \gamma \hat{\sigma }_w^2} dx \\&= 1 - \frac{1}{2\ln (\alpha )} \int _0^{\left( \frac{\lambda }{\hat{\sigma }_w^2} - \frac{1}{\alpha }\right) \frac{1}{\gamma }} \frac{e^{-x/\sigma _g^2}}{\frac{\lambda }{\gamma \hat{\sigma }_w^2}-x} dx \\&= 1 - \frac{e^{-\frac{\lambda }{\sigma _g^2 P}}}{2\ln (\alpha )} \int _{\frac{1}{\alpha \sigma _g^2\gamma }}^{\frac{\lambda }{\sigma _g^2 P}} \frac{e^{x}}{x } dx \\&= 1 - \frac{e^{-\frac{\lambda }{\sigma _g^2 P}}}{2\ln (\alpha )} \left[ \mathrm{Ei}\left( \frac{\lambda }{\sigma _g^2 P}\right) - \mathrm{Ei}\left( \frac{1}{\alpha \sigma _g^2\gamma } \right) \right] . \end{aligned}$$
(57)

Appendix D

We firstly prove \(\xi _{\min } < 0.9\) for \(1.0002 \le \alpha \le 3.16\) if \(\lambda ^\perp \ge \alpha \hat{\sigma }_w^2\). Then, we can conclude that for \(\xi _{\min } \ge 0.9\) and \(1.0002 \le \alpha \le 3.16\), we obtain \(\lambda ^\perp < \alpha \hat{\sigma }_w^2\).

Since the left hand side (LHS) of (26) increases with \(\lambda \) and is 0 when \(\lambda =\lambda ^\perp \), then

$$\begin{aligned} 0\ge & \int ^{\alpha /(\sigma _g^2 \gamma )}_{1/(\alpha \sigma _g^2 \gamma )} \frac{e^x}{x} dx - \frac{\sigma _g^2 \gamma }{\alpha } e^{\frac{\alpha }{\sigma _g^2 \gamma }} \\&= \frac{e^x}{x} \bigg |_{x=1/(\alpha \sigma _g^2 \gamma )}^{x=\alpha /(\sigma _g^2 \gamma )} + \int ^{\alpha /(\sigma _g^2 \gamma )}_{1/(\alpha \sigma _g^2 \gamma )} \frac{e^x}{x^2} dx - \frac{\sigma _g^2 \gamma }{\alpha } e^{\frac{\alpha }{\sigma _g^2 \gamma }} \\&= \int ^{\alpha /(\sigma _g^2 \gamma )}_{1/(\alpha \sigma _g^2 \gamma )} \frac{e^x}{x^2} dx - \alpha \sigma _g^2 \gamma e^{\frac{1}{\alpha \sigma _g^2 \gamma }} \\\ge & \left( \frac{\sigma _g^2 \gamma }{\alpha } \right) ^2 \left( e^{\frac{\alpha }{\sigma _g^2 \gamma }} - e^{\frac{1}{\alpha \sigma _g^2 \gamma }} \right) - \alpha \sigma _g^2 \gamma e^{\frac{1}{\alpha \sigma _g^2 \gamma }}. \end{aligned}$$
(58)

for \(\lambda ^\perp \ge \alpha \hat{\sigma }_w^2\). In (58), we applied \(\int ^b_a e^x dx /x^2 \ge (e^b-e^a)/b^2\). From (58), we obtain

$$\begin{aligned} - \left( \frac{\alpha ^2-1}{\alpha ^4} + \frac{\alpha -\alpha ^{-1}}{\sigma _g^2 \gamma } \right) e^{- \left( \frac{\alpha ^2-1}{\alpha ^4} + \frac{\alpha -\alpha ^{-1}}{\sigma _g^2 \gamma } \right) } \le - \frac{\alpha ^2-1}{\alpha ^4} e^{-\frac{\alpha ^2-1}{\alpha ^4}}, \end{aligned}$$
(59)

which, from [26], yields

$$\begin{aligned} \frac{\alpha -\alpha ^{-1}}{\sigma _g^2 \gamma } \le -W_{-1}\left( -\frac{\alpha ^2-1}{\alpha ^4} e^{-\frac{\alpha ^2-1}{\alpha ^4}} \right) -\frac{\alpha ^2-1}{\alpha ^4}, \end{aligned}$$
(60)

or equivalently,

$$\begin{aligned} \sigma _g^2 \gamma \ge \frac{\alpha -\alpha ^{-1}}{-W_{-1}\left( -\frac{\alpha ^2-1}{\alpha ^4} e^{-\frac{\alpha ^2-1}{\alpha ^4}} \right) -\frac{\alpha ^2-1}{\alpha ^4}}. \end{aligned}$$
(61)

Applying the inequality \(\int ^b_a e^x dx /x \ge (e^b-e^a)/b\), we have

$$\begin{aligned} \mathrm{Ei}\left( \frac{\alpha }{\sigma _g^2 \gamma }\right) - \mathrm{Ei}\left( \frac{1}{\alpha \sigma _g^2 \gamma } \right)&= \int ^{\alpha /(\sigma _g^2 \gamma )}_{1/(\alpha \sigma _g^2 \gamma )} \frac{e^x}{x} dx \\&> \frac{\sigma _g^2 \gamma }{\alpha } \left( e^{\frac{\alpha }{\sigma _g^2 \gamma }} - e^{\frac{1}{\alpha \sigma _g^2 \gamma }} \right) , \end{aligned}$$
(62)

which, from (28), yielding for \(\lambda ^\perp \ge \alpha \hat{\sigma }_w^2\),

$$\begin{aligned} \xi _{\min }< & 1 - \frac{1}{2 \ln (\alpha )} \frac{\sigma _g^2 \gamma }{\alpha } \left( 1 - e^{-\frac{\alpha -\alpha ^{-1}}{\sigma _g^2 \gamma }} \right) \\< & 1- \frac{\alpha -\alpha ^{-1}}{2 \alpha \ln (\alpha )} \frac{1 - e^{W_{-1}\left( -\frac{\alpha ^2-1}{\alpha ^4} e^{-\frac{\alpha ^2-1}{\alpha ^4}} \right) +\frac{\alpha ^2-1}{\alpha ^4}}}{-W_{-1}\left( -\frac{\alpha ^2-1}{\alpha ^4} e^{-\frac{\alpha ^2-1}{\alpha ^4}} \right) -\frac{\alpha ^2-1}{\alpha ^4}}, \end{aligned}$$
(63)

which is derived from (61) and the fact that \(\sigma _g^2 \gamma \left( 1 - e^{-\frac{\alpha -\alpha ^{-1}}{\sigma _g^2 \gamma }} \right) \) is an increasing function of \(\sigma _g^2 \gamma \). Moreover, we obtain

$$\begin{aligned} \frac{\alpha -\alpha ^{-1}}{2 \alpha \ln (\alpha )} \frac{1 - e^{W_{-1}\left( -\frac{\alpha ^2-1}{\alpha ^4} e^{-\frac{\alpha ^2-1}{\alpha ^4}} \right) +\frac{\alpha ^2-1}{\alpha ^4}}}{-W_{-1}\left( -\frac{\alpha ^2-1}{\alpha ^4} e^{-\frac{\alpha ^2-1}{\alpha ^4}} \right) -\frac{\alpha ^2-1}{\alpha ^4}} \ge 0.1, \end{aligned}$$
(64)

for \(1.0002 \le \alpha \le 3.16\). Accordingly, \(\xi _{\min } < 0.9\) for \(1.0002 \le \alpha \le 3.16\).

Appendix E

Equation (40) is derived in this “Appendix”. Since the LHS of (26) increases with \(\lambda \), it follows from (26) and (38) that

$$\begin{aligned}&\int _{\frac{1}{\alpha \sigma _g^2\gamma }}^{ \frac{1}{2 \epsilon \ln (\alpha )}} x^{-1} e^{x} dx - e^{ \frac{1}{2 \epsilon \ln (\alpha )}} 2 \epsilon \ln (\alpha ) \\&\quad \le \int _{\frac{1}{\alpha \sigma _g^2\gamma }}^{ \frac{\lambda ^\perp }{\sigma _g^2 P}} x^{-1} e^{x} dx - \frac{e^{\lambda ^\perp /(\sigma _g^2 P) }}{\lambda ^\perp /(\sigma _g^2 P)} \\&\quad = 0, \end{aligned}$$
(65)

for \(\lambda ^\perp \ge \sigma _g^2 P/[2 \epsilon \ln (\alpha )]\). Since \(\int e^z z^{-1} dt \simeq e^z ( z^{-1} + z^{-2}) \) for \(z \gg 1\) [25], we can approximate the LHS of (65) as

$$\begin{aligned}&\int _{\frac{1}{\alpha \sigma _g^2\gamma }}^{ \frac{1}{2 \epsilon \ln (\alpha )}} x^{-1} e^{x} dx - 2 \epsilon \ln (\alpha ) e^{ \frac{1}{2 \epsilon \ln (\alpha )}} \\&\quad \simeq [2 \epsilon \ln (\alpha )]^2 e^{ \frac{1}{2 \epsilon \ln (\alpha )}} - [\alpha \sigma _g^2\gamma + (\alpha \sigma _g^2\gamma )^2] e^{\frac{1}{\alpha \sigma _g^2\gamma }} \\&\quad \simeq [2 \epsilon \ln (\alpha )]^2 e^{ \frac{1}{2 \epsilon \ln (\alpha )}} - \alpha \sigma _g^2\gamma e^{\frac{1}{\alpha \sigma _g^2\gamma }}, \end{aligned}$$
(66)

for \(\sigma _g^2 \gamma \ll 1\). Therefore, it follows from (65) and (66) that

$$\begin{aligned} \frac{e^{-\frac{1}{\alpha \sigma _g^2\gamma }}}{\alpha \sigma _g^2\gamma } \lesssim [2 \epsilon \ln (\alpha )]^{-2}e^{-\frac{1}{2 \epsilon \ln (\alpha )}}, \end{aligned}$$
(67)

yielding (40).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ta, H.Q., Pham, QV., Ho-Van, K. et al. Covert communication with noise and channel uncertainties. Wireless Netw 28, 161–172 (2022). https://doi.org/10.1007/s11276-021-02828-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-021-02828-3

Keywords

Navigation