Skip to main content

Advertisement

Log in

Energy-balanced path optimization of UAV-assisted wireless power and information system

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The unmanned aerial vehicle (UAV)-assisted wireless power and information system is one of the great choices for energy supplement and information collection of the wireless sensor network (WSN). The ground wireless sensors are operating by the harvested radio frequency (RF) energy from UAVs. The lifetime of the wireless sensor network is affected by the minimal, mean and variance of harvested energy. In this paper, an energy-balanced path optimization of a single UAV is proposed. The proposed framework (1) utilizes the Lagrangian method and an energy threshold to obtain a relaxation solution without maximum speed constraint, (2) implements a genetic algorithm and continuous convex optimization algorithm to obtain optimal trajectory and power allocation strategy. Numerical results show that the minimal, average and variance of harvested energy of wireless sensors are improved under the different distributions of sensors. Based on the proposed framework, the minimal operational requirement of the UAV could be used to guide the model selection of the UAV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). T. Internet of Things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys and TutorialsFourthquarter (pp. 2347-2376).

  2. Zhang, X., Li, H. X., & Chung, H. S. H. (2021). Setup-independent sensing architecture with multiple UHF RFID sensor tags. IEEE Internet of Things Journal, 9(2), 1243–1251. https://doi.org/10.1109/JIOT.2021.3079448.

    Article  Google Scholar 

  3. Kyung, C. M. (Ed.). (2015). Nano devices and circuit techniques for low-energy applications and energy harvesting. Springer.

  4. Jaiswal, A., Kumar, S., Kaiwartya, O., Prasad, M., Kumar, N., & Song, H. (2021). Green computing in IoT: Time slotted simultaneous wireless information and power transfer. Computer Communications, 168, 155–169.

    Article  Google Scholar 

  5. Xie, L., Xu, J., & Zhang, R. (2018). Throughput maximization for UAV-enabled wireless powered communication networks. IEEE Internet of Things Journal, 6(2), 1690–1703.

    Article  Google Scholar 

  6. Zeng, Y., Zhang, R., & Lim, T. J. (2016). Throughput maximization for UAV-enabled mobile relaying systems. IEEE Transactions on Communications, 64(12), 4983–4996.

    Article  Google Scholar 

  7. Xu, Y., Xiao, L., Yang, D., Wu, Q., & Cuthbert, L. (2018). Throughput maximization in multi-UAV enabled communication systems with difference consideration. IEEE Access, 6, 55291–55301.

    Article  Google Scholar 

  8. Zeng, Y., Zhang, R., & Lim, T. J. (2016). Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE Communications Magazine, 54(5), 36–42.

    Article  Google Scholar 

  9. Wang, Z., Zhang, G., Wang, Q., Wang, K., & Yang, K. (2021). Completion time minimization in wireless-powered UAV-assisted data collection system. IEEE Communications Letters, 25(6), 1954–1958.

    Article  Google Scholar 

  10. Fu, S., Tang, Y., Wu, Y., Zhang, N., Gu, H., Chen, C., & Liu, M. (2021). Energy-efficient UAV-enabled data collection via wireless charging: A reinforcement learning approach. IEEE Internet of Things Journal, 8(12), 10209–10219.

    Article  Google Scholar 

  11. Yang, D., Wu, Q., Zeng, Y., & Zhang, R. (2018). Energy tradeoff in ground-to-UAV communication via trajectory design. IEEE Transactions on Vehicular Technology, 67(7), 6721–6726.

    Article  Google Scholar 

  12. Garg, N., Zhang, J., & Ratnarajah, T. (2021). Rate-energy balanced precoding design for SWIPT based two-way relay systems. IEEE Journal of Selected Topics in Signal Processing, 15(5), 1228–1241.

    Article  Google Scholar 

  13. Yang, W.U., Yang, W., & Zhang, D., et al. (2019). Throughput maximization of UAV-enabled wireless network in the presence of Jammers: Joint trajectory and communication design. IEICE Transactions on Communications.

  14. Liu, Y., Xiong, K., Lu, Y., Ni, Q., Fan, P., & Letaief, K. B. (2021). UAV-aided wireless power transfer and data collection in Rician fading. IEEE Journal on Selected Areas in Communications, 39(10), 3097–3113.

    Article  Google Scholar 

  15. Xie, L., Xu, J., & Zeng, Y. (2020). Common throughput maximization for UAV-enabled interference channel with wireless powered communications. IEEE Transactions on Communications, 68(5), 3197–3212.

    Article  Google Scholar 

  16. Che, Y., Xu, J., Duan, L., & Zhang, R. (2015). Multiantenna wireless powered communication with cochannel energy and information transfer. IEEE Communications letters, 19(12), 2266–2269.

    Article  Google Scholar 

  17. Guo, J., & Zhang, X. (2022). Online power control and optimization for energy harvesting communication system based on state of charge. Wireless Personal Communications, 122(4), 3513–3527.

    Article  Google Scholar 

  18. Sun, S., Zhao, J., Feng, X., Zhang, J., & Luo, J. (2019). Mobile multi-sink nodes path planning algorithm concerned with energy balance in wireless sensor networks. IEEE Access, 7, 96942–96952.

    Article  Google Scholar 

  19. Zhou, X., Li, Y., He, D., Zhang, C., & Ji, X. (2021). Energy-efficient channel allocation based data aggregation for intertidal wireless sensor networks. IEEE Sensors Journal, 21(15), 17386–17394.

    Article  Google Scholar 

  20. Xu, Y. A. N. G., Ruiy, W. A. N. G., & Tao, Z. H. A. N. G. (2020). Review of unmanned aerial vehicle swarm path planning based on intelligent optimization. Control Theory and Applications, 37(11), 2291–2302.

    Google Scholar 

  21. Du, Z. W., Yang, Y. J., & Sun, Y. X. (2008). An improved ant colony optimization algorithm for solving the TSP problem. Applied Mechanics and Materials, 10, 142–149.

    Google Scholar 

  22. Boyd, S., Boyd, S. P., & Vandenberghe, L. (2004). Convex optimization problems. Convex optimization (pp. 69–195). Cambridge University Press.

  23. Li, M. (2019). Generalized Lagrange multiplier method and KKT conditions with an application to distributed optimization. EEE Transactions on Circuits and Systems II: Express Briefs, pp, 252–256.

    Article  Google Scholar 

  24. Karunanithy, K., & Velusamy, B. (2020). Energy efficient cluster and travelling salesman problem based data collection using WSNs for Intelligent water irrigation and fertigation. Measurement, 161, 107835.

    Article  Google Scholar 

  25. Sembiring, M. T., & Chailes, S. (2020). Ant colony optimization implementation on traveling salesman problem to achieve the shortest logistic route. IOP Conference Series: Materials Science and Engineering, 1003(1), 012045.

    Article  Google Scholar 

  26. Che, Y., Lai, Y., Luo, S., Wu, K., & Duan, L. (2020). UAV-aided information and energy transmissions for cognitive and sustainable 5G networks. IEEE Transactions on Wireless Communications, 20(3), 1668–1683.

    Article  Google Scholar 

  27. Wen, X., Luan, L., & Qin, S. (2021). A continuous-time neurodynamic approach and its discretization for distributed convex optimization over multi-agent systems. Neural Networks, 143, 52–65.

    Article  Google Scholar 

  28. Han, G., Zhang, J. K., & Mu, X. (2016). Joint optimization of energy harvesting and detection threshold for energy harvesting cognitive radio networks. IEEE Access, 4, 7212–7222.

    Article  Google Scholar 

  29. Raza, U., Kulkarni, P., & Sooriyabandara, M. (2017). Low power wide area networks: An overview. IEEE Communications Surveys and Tutorials, 19(2), 855–873.

    Article  Google Scholar 

  30. Obeid, A. M., Atitallah, N., Loukil, K., Abid, M., & Bensalah, M. (2018). A survey on efficient power consumption in adaptive wireless sensor networks. Wireless Personal Communications, 101(1), 101–117.

    Article  Google Scholar 

Download references

Funding

The work was supported by National Natural Science Foundation of China grant number 61803087, Guangdong and Applied Basic Research Fund 2019A1515110180.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Yang, S., Yang, Z. et al. Energy-balanced path optimization of UAV-assisted wireless power and information system. Wireless Netw 28, 2047–2059 (2022). https://doi.org/10.1007/s11276-022-02955-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-022-02955-5

Keywords

Navigation