Skip to main content
Log in

Fast Receive Antenna Selection for Spatial Multiplexing MIMO over Correlated Rayleigh Fading Channels

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

It is well known that the capacity of spatial multiplexing multiple-input multiple-output (SM-MIMO) system employing optimal antenna selection can significantly outperform a system without selection for same number of costly radio frequency chains. However, it requires an exhaustive search for the optimal selection (OS) that grows exponentially with the available number of transmit (u) and receive (m) antennas. In this paper, a novel low complexity receive antenna selection (RAS) technique is proposed for SM-MIMO to maximize the channel capacity over correlated Rayleigh fading environment. It is based on the Euclidean norms of channel matrix rows and the corresponding phase differences due to their direct impact on the capacity. Extensive analysis and simulations have shown near optimal performance for any signal-to-noise-ratio and correlation values with low complexity of \({\mathcal{O} \left({u^{2}m}\right)}\) vector calculations. This technique provides fast RAS to capture most of the capacity gain promised by multiple antenna systems over different channel conditions. Furthermore, it enables efficient spectrum utilization for next generation wireless communications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mietzner J., Schober R., Lampe L., Gerstacker W., Hoeher A. (2009) Multiple-antenna techniques for wireless communications—a comprehensive literature survey. IEEE Communications Surveys & Tutorials 11(2): 87–105

    Article  Google Scholar 

  2. Paulraj A., Gore D., Nabar R., Bolcskei H. (2004) An overview of MIMO communications—a key to gigabit wireless. IEEE Proceedings 92(2): 198–218

    Article  Google Scholar 

  3. Parkvall S., Furuskar A., Dahlman E. (2011) Evolution of LTE toward IMT-advanced. IEEE Communications Magazine 49(2): 84–91

    Article  Google Scholar 

  4. Li Q., Furuskar A., Li G., Lee W., Lee M., Mazzarese D., Clerckx B., Li Z. (2010) MIMO techniques in WiMAX and LTE: A feature overview. IEEE Communications Magazine 48(5): 86–92

    Article  Google Scholar 

  5. Akhtar J., Gesbert D. (2005) Spatial multiplexing over correlated MIMO channels with a closed-form precoder. IEEE Transactions on Wireless Communcations 4(5): 2400–2409

    Article  Google Scholar 

  6. Molisch A., Win M. (2004) MIMO systems with antenna selection. IEEE Microwave Magazine 5(1): 46–56

    Article  Google Scholar 

  7. Sanayei S., Nosratinia A. (2004) Antenna selection in MIMO systems. IEEE Communications Magazine 42(10): 68–73

    Article  Google Scholar 

  8. Molisch A., Win M., Choi Y. S., Winters J. (2005) Capacity of MIMO systems with antenna selection. IEEE Transactions on Wireless Communications 4(4): 1759–1772

    Article  Google Scholar 

  9. Gorokhov A., Gore D., Paulraj A. (2003) Receive antenna selection for MIMO spatial sultiplexing: Theory and algorithms. IEEE Transactions on Signal Processing 51(11): 2796–2807

    Article  MathSciNet  Google Scholar 

  10. Gharavi-Alkhansari M., Gershman A. (2004) Fast antenna subset selection in MIMO systems. IEEE Transactions on Signal Processing 52(2): 339–347

    Article  MathSciNet  Google Scholar 

  11. Jensen M., Morris M. (2005) Efficient capacity-based antenna selection for MIMO systems. IEEE Transactions on Vehicular Technology 54(1): 110–116

    Article  Google Scholar 

  12. Zhang X., Molisch A., Kung S. Y. (2005) Variable-phase-shift-based RF-baseband codesign for MIMO antenna selection. IEEE Transactions on Signal Processing 53(11): 4091–4103

    Article  MathSciNet  Google Scholar 

  13. Zhang Y., Ji C., Malik W., O’Brien D., Edwards D. (2009) Receive antenna selection for MIMO systems over correlated fading channels. IEEE Transactions on Wireless Communications 8(9): 4393–4399

    Article  Google Scholar 

  14. Narasimhan R. (2003) Spatial multiplexing with transmit antenna and constellation selection for correlated MIMO fading channels. IEEE Transactions on Wireless Communications 51(11): 2829–2838

    Google Scholar 

  15. Yang Y., Blum R., Sfar S. (2009) Antenna selection for MIMO systems with closely spaced antennas. EURASIP Journal On Wireless Communications and Networking 2009(ID739828): 1–11

    Google Scholar 

  16. Heath R. Jr., Sandhu S., Paulraj A. (2001) Antenna selection for spatial multiplexing systems with linear receivers. IEEE Communications Letters 5(4): 142–144

    Article  Google Scholar 

  17. Wang B., Hui H., Leong M. (2010) Global and fast receiver antenna selection for MIMO systems. IEEE Transactions on Communications 58(9): 2505–2510

    Article  Google Scholar 

  18. Dai L., Sfar S., Letaief K. (2006) Optimal antenna selection based on capacity maximization for MIMO systems in correlated channels. IEEE Transactions on Communications 54(3): 563–573

    Article  Google Scholar 

  19. Karamalis P., Skentos N., Kanatas A. (2004) Selecting array configurations for MIMO systems: An evolutionary computation approach. IEEE Transactions on Wireless Communications 3(6): 1994–1998

    Article  Google Scholar 

  20. Lu H. Y., Fang W. H. (2007) Joint transmit/receive antenna selection in MIMO systems based on the priority-based genetic algorithm. IEEE Antennas and Wireless Propogation Letters 6: 588–591

    Article  Google Scholar 

  21. Lain J. K. (2011) Joint transmit/receive antenna selection for MIMO systems: A real-valued genetic approach. IEEE Communications Letters 15(1): 58–60

    Article  Google Scholar 

  22. Soysal A., Ulukus S. (2010) Joint channel estimation and resource allocation for MIMO systems—partI: Single-user analysis. IEEE Transactions on Wireless Communications 9(2): 624–631

    Article  Google Scholar 

  23. Sklar B. (1997) Rayleigh fading channels in mobile digital communication systems, part I: Characterization. IEEE Communications Magazine 35(7): 90–100

    Article  Google Scholar 

  24. Alouini M., Goldsmith A. (1999) Capacity of Rayleigh fading channels under different adaptive transmission and diversity-combining techniques. IEEE Transactions on Vehicular Technology 48(4): 1165–1181

    Article  Google Scholar 

  25. Al-Hussaibi W., Ali F. (2012) Generation of correlated Rayleigh fading channels for accurate simulation of promissing wireless communication systems. Elsevier Journal On: Simulation Modelling Practice and Theory 25(4): 56–72

    Article  Google Scholar 

  26. Al-Hussaibi, W., & Ali, F. (2011). Iterative coloring technique for the generation of correlated Rayleigh fading envelopes for multi-antenna and multicarrier systems. In Proceedings of the 12th PGNet2011 (pp. 103-108), UK, June 2011.

  27. Yoo T., Goldsmith A. (2005) Capacity and power allocation for fading MIMO channels with channel estimation error. IEEE Transactions on Information Theory 52(5): 2203–2214

    MathSciNet  Google Scholar 

  28. Rizogiannis C., Kofidis E., Papadias C., Theodoridis S. (2010) Semi-blind maximum-likelihood joint channel/data estimation for correlated channels in multiuser MIMO networks. ELSEVIER Journal On Signal Processing 90: 1209–1224

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Falah H. Ali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Hussaibi, W.A., Ali, F.H. Fast Receive Antenna Selection for Spatial Multiplexing MIMO over Correlated Rayleigh Fading Channels. Wireless Pers Commun 70, 1243–1259 (2013). https://doi.org/10.1007/s11277-012-0745-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-012-0745-9

Keywords

Navigation