Skip to main content
Log in

Spatial-Temporal Cooperative Spectrum Sensing in Flat Fading Channels for Cognitive Radio Using Extend Kalman Filter

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper investigates a new channel gain map tracking by Space-Time Extended Kalman Filtering (STEKF) for a flat channel, and a novel spectrum sensing via Time Spatial Weighted Non-negative Lasso (TSWNL) algorithm. STEKF enables CRs to estimate and interpolate channel gain map for the entire geographical area of interest with a limited number of CRs measurements. In order to sense primary users (PU) activities, include the transmission power by each PU, location and number of active PUs, TSWNL algorithm is proposed. Numerical results illustrate that the proposed STEKF channel estimation and TSWNL sensing algorithms outperforms linear methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selcted Areas in Communication, 23, 201–220.

    Article  Google Scholar 

  2. Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys & Tutorials, 11(1), 116–130.

    Article  Google Scholar 

  3. Zhao, Q., & Swami, A. (2007). A survey of dynamic spectrum access: Signal processing and networking perspectives. In Proc. IEEE Int. Conf. Acoustics, Speech, Signal Process (pp. 1349–1352).

  4. Chen, Q., Motani, M., Wong, W.-C., & Nallanathan, A. (2011). Cooperative spectrum sensing strategies for cognitive radio mesh networks. Selected Topics in Signal Processing, IEEE Journal of, 5(1), 56–67.

    Article  Google Scholar 

  5. Gandetto, M., & Regazzoni, C. (2007). Spectrum sensing: A distributed approach for cognitive terminals. Selected Areas in Communications, IEEE Journal on, 25(3), 546–557.

    Article  Google Scholar 

  6. Ganesan, G., Li, Y., Bing, B., & Li, S. (2008). Spatio-temporal sensing in cognitive radio networks. IEEE Journal on Selected Areas in Communications, 26(1), 5–12.

    Article  Google Scholar 

  7. Mark, B. L., & Nasif, A. O. (2009). Estimation of maximum interference-free transmit power level for opportunistic spectrum access. IEEE Transactions on Wireless Communications, 8(5), 2505–2513.

    Article  Google Scholar 

  8. Tandra, R., Sahai, A., & Mishra, S. M. (2009). What is a spectrum hole and what does it take to recognize one? Proceedings of the IEEE, 97(5), 824–848.

    Article  Google Scholar 

  9. Gezici, S. (2008). A survey on wireless position estimation. Spiringer, Journal of Wireless Personal Communications, 44(3), 263–282.

    Article  Google Scholar 

  10. Rappaport, T. S. (1996). Wireless communications. Principles practice. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  11. Poutanen, J., Haneda, K., Kolmonen, V.-M., Salmi, J., & Vainikainen, P. (2009). Analysis of correlated shadow fading in dual-link indoor radio wave propagation. Antennas and Wireless Propagation Letters, IEEE, 8, 1190–1193.

    Article  Google Scholar 

  12. Malmgren, G. (1997). On the performance of single frequency networks in correlated shadow fading. IEEE Transactions on Broadcasting, 43(2), 155–165.

    Article  Google Scholar 

  13. Gudmundson, M. (1991). Correlation model for shadow fading in mobile radio systems. Electronics Letters, 27(23), 2145–2146.

    Article  Google Scholar 

  14. Agrawal, P., & Patwari, N. (2009). Correlated link shadow fading in multi-hop wireless network. IEEE Transactions on Wireless Communications, 8(8), 4024–4036.

    Article  Google Scholar 

  15. Wikle, C. K., & Cressie, N. (1999). A dimension-reduced approach to space-time Kalman filtering. Biometrika, 86(4), 815–829.

    Article  MATH  MathSciNet  Google Scholar 

  16. Proakis, J.G., & Salehi, M. (1995). Digital communications (Fifth edn). New York: McGraw-Hill.

  17. Anderson, B. D. O., & Moore, J. B. (1979). Optimal filtering. ser. Prentice- Hall information and system sciences series. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  18. Bazerque, J.-A., & Giannakis, G. B. (2010). Distributed spectrum sensing for cognitive radio networks by exploiting sparsity. IEEE Transactions on Signal Processing, 58(3), 1847–1862.

    Article  MathSciNet  Google Scholar 

  19. Angelosante, D., Bazerque, J.-A. & Giannakis, G. B. (2009). Online coordinate descent for adaptive estimation of sparse signals. In Proc. IEEE Workshop Statist. Signal Process., Cardiff, Wales, U.K. (pp. 369–372).

  20. Suetin, P. K. (1999). Orthogonal polynomials in two variables. Boca Raton, FL: CRC.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrad Mahboobi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahboobi, B., Mohammadkarimi, M. & Ardebilipour, M. Spatial-Temporal Cooperative Spectrum Sensing in Flat Fading Channels for Cognitive Radio Using Extend Kalman Filter. Wireless Pers Commun 75, 195–218 (2014). https://doi.org/10.1007/s11277-013-1356-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1356-9

Keywords

Navigation