Skip to main content
Log in

A Performance Study of Semidefinite Relaxation Detector in Spatially Correlated and Rank Deficient Large MIMO Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Large MIMO detection has gained significant attention in the recent past with computational complexity as the research focus. However, they assume the channel to be i.i.d and uncorrelated, which is not a valid assumption in practice due to the fixed physical space constraints in large MIMO. Nevertheless, there is a little work carried out in these lines. In this paper, we consider the problem of detection in large spatial multiplexing MIMO systems and we investigate the semidefinite relaxation (SDR) approach to solve this problem. We investigate the applicability of SDR approach in large MIMO setting and study its performance in spatially correlated and rank deficient channel conditions. Through the simulation results, we demonstrate the superior performance of semidefinite relaxation detector over other existing methods in uncorrelated and correlated large MIMO systems especially in low SNR regime. The performance of SDR detector is noteworthy with large number of antennas despite the system being rank deficient and the average running time also scales up well for large systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mietzner, J., Schober, R., Lampe, L., Gerstacker, W. H., & Hoeher, P. A. (2009). Multiple-antenna techniques for wireless communications—a comprehensive literature survey. IEEE Communications Surveys & Tutorials, 11(2), 87–105.

    Article  Google Scholar 

  2. Rusek, F., Persson, D., Lau, B. K., Larsson, E. G., Marzetta, T. L., Ove, E., & Tufvesson, F. (2013). Scaling Up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.

  3. Hoydis, J., ten Brink, S., & Debbah, M. (2013). Massive MIMO in the UL/DL of cellular networks: How many antennas do we need ? IEEE Journal of Selected Areas in Communications, 31(2), 160–171.

    Article  Google Scholar 

  4. Paulraj, A. J., Gore, D. A., Nabar, R. U., & Blcskei, H. (2004). An overview of MIMO communications a key to gigabit wireless. Proceedings of the IEEE, 92(2), 198–218.

    Article  Google Scholar 

  5. Gesbert, D., Bölcskei, H., Gore, D. A., & Paulraj, A. J. (2002). Outdoor MIMO wireless channels: Models and performance prediction. IEEE Transactions on Communications, 50(12), 1926–1934.

    Article  Google Scholar 

  6. Forenza, A., Love, D. J., & Heath, R. W. (2007). Simplified spatial correlation models for clustered MIMO channels with different array configurations. IEEE Transactions on Vehicular Technology, 56(4), 1924–1934.

    Article  Google Scholar 

  7. Masouros, C., Sellathurai, M., & Ratnarajah, T. (2013). Large-scale MIMO transmitters in fixed physical spaces: The effect of transmit correlation and mutual coupling. IEEE Transactions on Communications, 61(7), 2794–2804.

    Article  Google Scholar 

  8. Liang, Y., Sun, S., & Ho, C. K. (2006). Block-iterative generalized decision feedback equalizers for large MIMO systems: Algorithm design and asymptotic. IEEE Transactions on Signal Processing, 54(6), 2035–2048.

    Article  Google Scholar 

  9. Wubben, D., Bohnke, R., Kuhn, Volker, K., & Kammeyer, K.-D. (2004). Near-maximum-likelihood detection of MIMO systems using MMSE-based lattice-reduction. In IEEE international conference on communications, pp. 798–802.

  10. Wubben, D., Seethaler, D., Jaldn, J., & Matz, G. (2011). Lattice reduction: A survey with applications in wireless communications. IEEE Signal Processing Magazine, 28(3), 70–91.

    Article  Google Scholar 

  11. Li, Q., Zhang, J., Bai, L., & Choi, J. (2013). Lattice reduction-based approximate MAP detection with bit-wise combining and integer perturbed list generation. IEEE Transactions on Communications, 61(8), 3259–3269.

    Article  Google Scholar 

  12. Ma, W.-K., Davidson, T. N., Wong, K. M., Luo, Z.-Q., & Ching, P.-C. (2002). Quasi-maximum-likelihood multiuser detection using semi-definite relaxation with application to synchronous CDMA. IEEE Transactions on Signal Processing, 50(4), 912–922.

    Article  MathSciNet  Google Scholar 

  13. Sidiropoulos, N. D., & Luo, Z.-Q. (2006). A semidefinite relaxation approach to MIMO detection for high-order QAM constellations. IEEE Signal Processing Letters, 13(9), 525–528.

    Article  Google Scholar 

  14. Kim, M., Park, J., Kim, K., & Kim, J. (2014). Exact ML criterion based on semide fi nite relaxation for MIMO systems. IEEE Signal Processing Letters, 21(3), 343–346.

    Article  Google Scholar 

  15. Ma, Z., Fan, P., Larsson, E. G., & Honary, B. (2009). Quasi-maximum-likelihood multiple-symbol differential detection for time-varying Rayleigh fading channel. Electronics Letters, 45(22), 1127–1128.

    Article  Google Scholar 

  16. Luo, Z., Ma, W.-K., So, A. M., Ye, Y., & Zhang, S. (2010). Semidefinite relaxation of quadratic optimization problems. IEEE Signal Processing Magazine, 27(3), 20–34.

    Article  Google Scholar 

  17. Datta, T., Srinidhi, N., Chockalingam, A., & Rajan, B. S. (2010). Random-restart reactive tabu search algorithm for detection in large-MIMO systems. IEEE Communications Letters, 14(12), 1107–1109. doi:10.1109/LCOMM.2010.101210.101587.

    Article  Google Scholar 

  18. Srinidhi, N., Datta, T., Chockalingam, A., & Rajan, B. S. (2011). Layered tabu search algorithm for large-MIMO detection and a lower bound on ML performance. IEEE Transactions on Communications, 59(11), 2955–2963.

    Article  Google Scholar 

  19. Pan, J., Ma, W.-K., & Jaldn, J. (2014). MIMO detection by Lagrangian dual maximum-likelihood relaxation: Reinterpreting regularized lattice decoding. IEEE Transactions on Signal Processing, 62(2), 511–524.

    Article  MathSciNet  Google Scholar 

  20. Vardhan, K. V., Mohammed, S. K., Chockalingam, A., & Rajan, B. S. (2008). A low-complexity detector for large MIMO systems and multicarrier CDMA systems. IEEE Journal of Selected Areas in Communications, 26(3), 473–485.

    Article  Google Scholar 

  21. Mohammed, S. K., Zaki, A., Chockalingam, A., & Rajan, B. S. (2009). High-rate space–time coded large-MIMO systems: Low-complexity detection and channel estimation. IEEE Journal of Selected Topics in Signal Processing, 3(6), 958–974.

    Article  Google Scholar 

  22. Sva, P., Meyer, F., Riegler, E., & Hlawatsch, F. (2013). Soft-heuristic detectors for large MIMO systems. IEEE Transactions on Signal Processing, 61(18), 4573–4586.

    Article  MathSciNet  Google Scholar 

  23. Barbero, L. G., & Thompson, J. S. (2009). Performance of the complex sphere decoder in spatially correlated MIMO channels. IET Communications, 1(1), 122–130.

    Article  Google Scholar 

  24. Windpassinger, C., Lampe, L., Fischer, R. F. H., & Hehn, T. (2006). A performance study of MIMO detectors. IEEE Transactions on Wireless Communication, 5(8), 2004–2008.

    Article  Google Scholar 

  25. Choi, J., & Nguyen, H. (2009). SIC-based detection with list and lattice reduction for MIMO channels. IEEE Transactions on Vehicular Technology, 58(7), 3786–3790.

    Article  Google Scholar 

  26. Najafi, H., Jafari, M. E. D., & Damen, M. O. (2011). On adaptive lattice reduction over correlated fading channels. IEEE Transactions on Communications, 59(5), 1224–1227.

    Article  Google Scholar 

  27. Liu, W., Choi, K., & Liu, H. (2010). Computationally efficient lattice reduction for MIMO–OFDM systems. In IEEE 6th international conference wireless mobile computing, networks, communication, pp. 264–267.

  28. Liu, W., Choi, K., & Liu, H. (2012). Computationally efficient lattice reduction aided detection for MIMO-OFDM systems under correlated fading channels. ETRI Journal, 34(4), 503–510.

    Article  Google Scholar 

  29. Zhou, Q., & Ma, X. (2013). Element-based lattice reduction algorithms for large MIMO detection. IEEE Journal of Selected Areas in Communications, 31(2), 274–286.

    Article  Google Scholar 

  30. Shao, Z. Y., Cheung, S. W., & Yuk, T. I. (2010). Semi-definite relaxation decoder for 256-QAM MIMO system. Electronics Letters, 46(11), 796–797.

    Article  Google Scholar 

  31. Shao, Z. Y., Cheung, S. W., & Yuk, T. I. (2014). Lattice-reduction-aided semidefinite relaxation detection algorithms for multiple-input multiple-output systems. IET Communications, 8(4), 448–454.

    Google Scholar 

  32. Wai, H.-T., Ma, W.-K., & So, A. M.-C. (2011). Cheap semidefinite relaxation MIMO detection using row-by-row block coordinate descent. In IEEE international conference on acoustics, speech and signal processing (ICASSP), pp. 3256–3259.

  33. Mobasher, A., Sotirov, R., & Khandani, A. K. (2010). Matrix-lifting semi-definite programming for detection in multiple antenna systems. IEEE Transactions on Signal Processing, 58(10), 5178–5185.

    Article  MathSciNet  Google Scholar 

  34. Damen, M. O., Abed-meraim, K., & Bel, J. (2000). A generalized sphere decoder for asymmetrical space-time communication architecture. Electronics Letters, 36(2), 166–167.

    Article  Google Scholar 

  35. Wang, P., & Le-ngoc, T. (2009). A low-complexity generalized sphere decoding approach for underdetermined linear communication systems: performance and complexity evaluation. IEEE Transactions on Communications, 57(11), 3376–3388.

    Article  Google Scholar 

  36. Cui, T., & Tellambura, C. (2005). An efficient generalized sphere decoder for rank-deficient MIMO systems. IEEE Communications Letters, 9(5), 423–425.

    Article  Google Scholar 

  37. Datta, T., Srinidhi, N., Chockalingam, A., & Rajan, B. S. (2012). Low-complexity near-optimal signal detection in underdetermined large-MIMO systems. In National conference on communications (NCC), pp. 1–5. doi:10.1109/NCC.2012.6176823.

  38. Ding, Y., Wang, Y., Diouris, J., & Yao, Z. (2013). Robust fixed-complexity sphere decoders for MIMO systems. IEEE Transactions on Wireless Communication, 12(9), 4297–4305.

    Article  Google Scholar 

  39. Wiesel, A., Eldar, Y. C., & Shitz, S. S. (2005). Semidefinite relaxation for detection of 16-QAM signaling in MIMO channels. IEEE Signal Processing Letters, 12(9), 653–656.

    Article  Google Scholar 

  40. Mao, Z., Wang, X., & Wang, X. (2007). Semidefinite programming relaxation approach for multiuser detection of QAM signals. IEEE Transactions on Wireless Communication, 6(12), 4275–4279.

    Article  Google Scholar 

  41. Ma, W.-K., Su, C., Jaldn, J., Chang, T., & Chi, C. (2009). The equivalence of semidefinite relaxation MIMO detectors for higher-order QAM. IEEE Journal of Selected Topics in Signal Processing, 3(6), 1038–1052.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ramanathan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramanathan, R., Jayakumar, M. A Performance Study of Semidefinite Relaxation Detector in Spatially Correlated and Rank Deficient Large MIMO Systems. Wireless Pers Commun 83, 2883–2897 (2015). https://doi.org/10.1007/s11277-015-2572-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2572-2

Keywords

Navigation