Skip to main content

Advertisement

Log in

Energy-Efficient Dynamic Point Selection and Scheduling Method for Intra-cell CoMP in LTE-A

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel dynamic point selection (DPS) and user scheduling method for improving the energy efficiency in distributed antenna systems without cell edge spectral efficiency degradation. When DPS is used, each user is served by a single transmission point that can be dynamically switched. The proposed method decreases the power consumption by switching off inactive radio frequency (RF) chains and additionally reduces the interference by a static inter-cell agreement on which transmission points are simultaneously active. The performance of the method is evaluated by computer simulations in a system that accurately models the LTE-Advanced (LTE-A) intra-cell coordinated multi-point scenario 4. Based on the performance simulations, the proposed method achieves a significant energy efficiency gain over closed-loop spatial multiplexing applied on localized or distributed transmitting antennas. In general, the proposed method performs well when the load-independent RF power consumption is high in the active mode and low in the sleep mode. When the proportion of the load-independent RF power consumption to the total load-independent power consumption exceeds a certain limit, which is 22 % in the case of ten users in the 3-sector layout, the proposed method brings always energy efficiency gain even when RF chain micro sleeping cannot be implemented. The usability of the method is not dependent on the traffic load. The same approach can be applied to any distributed antenna system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chen, L., Wang, W., Anpalagan, A., Vasilakos, A. V., Illanko, K., Wang, H., et al. (2013). Green cooperative cognitive communication and networking: A new paradigm for wireless networks. Mobile Networks and Applications, 18(4), 524–534.

    Article  Google Scholar 

  2. Alsharif, M. H., Nordin, R., & Ismail, M. (2014). Classification, recent advances and research challenges in energy efficient cellular networks. Wireless Personal Communications, 77(2), 1249–1269.

    Article  Google Scholar 

  3. ITU-R Report M.2134. (2008). Requirements related to technical performance for IMT-Advanced radio interface(s).

  4. Ghosh, A., Ratasuk, R., Mondal, B., Mangalvedhe, N., & Thomas, T. (2010). LTE-Advanced: Next-generation wireless broadband technology. IEEE Wireless Communication Magazine, 17(3), 10–22.

    Article  Google Scholar 

  5. Chen, T., Yang, Y., Zhang, H., Kim, H., & Horneman, K. (2011). Network energy saving technologies for green wireless access networks. IEEE Wireless Communication Magazine, 18(5), 30–38.

    Article  Google Scholar 

  6. Frenger, P., Moberg, P., Malmodin, J., Jading, Y., & Gódor, I. (2011). Reducing energy consumption in LTE with cell DTX. In Proceedings of IEEE VTC Spring. Budapest, Hungary.

  7. Wang, R., Thompson, J., Haas, H., & Grant, P. (2011). Sleep mode design for green base stations. IET Communications, 5(18), 2606–2616.

    Article  MathSciNet  Google Scholar 

  8. Goldsmith, A., Jafar, S. A., Jindal, N., & Vishwanath, S. (2003). Capacity limits of MIMO channels. IEEE Journal on Selected Areas in Communications, 21(5), 684–702.

    Article  Google Scholar 

  9. Kakitani, M. T., Brante, G., Souza, R. D., & Imran, M. A. (2013). Energy efficiency of transmit diversity systems under a realistic power consumption model. IEEE Communications Letters, 17(1), 119–122.

    Article  Google Scholar 

  10. Cui, S., Goldsmith, A. J., & Bahai, A. (2004). Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks. IEEE Journal on Selected Areas in Communications, 22(6), 1089–1098.

    Article  Google Scholar 

  11. Héliot, F., Imran, M. A., & Tafazolli, R. (2012). On the energy efficiency-spectral efficiency trade-off over the MIMO Rayleigh fading channel. IEEE Transactions on Communications, 60(5), 1345–1356.

    Article  Google Scholar 

  12. Onireti, O., Heliot, F., & Imran, M. A. (2013). On the energy efficiency-spectral efficiency trade-off of distributed MIMO systems. IEEE Transactions on Communications, 61(9), 3741–3753.

    Article  Google Scholar 

  13. Xu, J., & Qiu, L. (2013). Energy efficiency optimization for MIMO broadcast channels. IEEE Transactions on Wireless Communications, 12(2), 690–701.

    Article  MathSciNet  Google Scholar 

  14. Irmer, R., Droste, H., Marsch, P., Grieger, M., Fettweis, G., Brueck, S., et al. (2011). Coordinated multipoint: Concepts, performance, and field trial results. IEEE Communications Magazine, 49(2), 102–111.

    Article  Google Scholar 

  15. Lee, J., Kim, Y., Lee, H., Ng, B. L., Mazzarese, D., Liu, J., et al. (2012). Coordinated multipoint transmission and reception in LTE-Advanced systems. IEEE Communications Magazine, 50(11), 44–50.

    Article  Google Scholar 

  16. 3GPP Technical Report TR 36.819. (2011). Coordinated multi-point operation for LTE physical layer aspects. V11.1.0.

  17. Holtkamp, H., Auer, G., Bazzi, S., & Haas, H. (2014). Minimizing base station power consumption. IEEE Journal on Selected Areas in Communications, 32(2), 297–306.

    Article  Google Scholar 

  18. Abdallah, K., Cerutti, I., & Castoldi, P. (2012). Energy-efficient coordinated sleep of LTE cells. In Proceedings of IEEE ICC. Ottawa, Canada.

  19. ITU-R Report M.2135-1. (2009). Guidelines for evaluation of radio interface technologies for IMT-advanced.

  20. Chhedda, A. & Bassirat, F. (1999). Enhanced cellular layout for CDMA networks having six-sectored cells. U.S. Patent 5,960,349.

  21. Sheikh, M. U., & Lempiäinen, J. (2013). A flower tessellation for simulation purpose of cellular network with 12-sector sites. IEEE Wireless Communications Letters, 2(3), 279–282.

    Article  Google Scholar 

  22. 3GPP Technical Specification TS 36.211. (2013). Physical channels and modulation. V11.5.0.

  23. 3GPP Technical Specification TS 36.213. (2013). Physical layer procedures. V11.5.0.

  24. Schwarz, S., Mehlführer, C., & Rupp, M. (2010). Calculation of the spatial preprocessing and link adaptation feedback for 3GPP UMTS/LTE. In Proceedings of WiAD Conference. London, UK.

  25. Nam, Y. H., Akimoto, Y., Kim, Y., il Lee, M., Bhattad, K., & Ekpenyong, A. (2012). Evolution of the reference signals for LTE-Advanced systems. IEEE Communications Magazine, 50(2), 132–138.

    Article  Google Scholar 

  26. Institute of Telecommunications. (2011). Vienna LTE simulators: Link level simulator documentation v1.7r1089. Vienna, Austria: Vienna University of Technology.

  27. Ikuno, J. C., Wrulich, M., & Rupp, M. (2010). System level simulation of LTE networks. In Proceedings of IEEE VTC Spring. Taipei, Taiwan.

  28. Berggren, F. & Jäntti, R. (2003). Multiuser scheduling over Rayleigh fading channels. In Proceedings of IEEE GLOBECOM. San Francisco, CA.

  29. Etsi TR 103.117. (2012). Principles for mobile network level energy efficiency. V1.1.1

  30. Varma, V. S., Elayoubi, S. E., Debbah, M., & Lasaulce, S. (2013). On the energy efficiency of virtual MIMO systems. In Proceedings of IEEE PIMRC. London, UK.

  31. Joung, J., Ho, C. K., & Sun, S. (2014). Spectral efficiency and energy efficiency of OFDM systems: Impact of power amplifiers and countermeasures. IEEE Journal on Selected Areas in Communications, 32(2), 208–220.

    Article  Google Scholar 

  32. Li, G. Y., Niu, J., Lee, D., Fan, J., & Fu, Y. (2014). Multi-cell coordinated scheduling and MIMO in LTE. IEEE Communications Surveys and Tutorials, 16(2), 761–775.

    Article  Google Scholar 

  33. Lasanen, M., Aubree, M., Cassan, C., Conte, A., David, J., Elayoubi, S. E., et al. (2013). Environmental friendly mobile radio networks: Approaches of the European OPERA-Net 2 project. In Proceedings of ICT. Casablanca, Morocco.

  34. Holtkamp, H., Auer, G., Giannini, V., & Haas, H. (2013). A parameterized base station power model. IEEE Communications Letters, 17(11), 2033–2035.

    Article  Google Scholar 

  35. Deruyck, M., Joseph, W., Lannoo, B., Colle, D., & Martens, L. (2013). Designing energy-efficient wireless access networks: LTE and LTE-Advanced. IEEE Internet Computing, 17(5), 39–45.

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly funded by Tekes—the Finnish Funding Agency for Innovation (Decision No. 40446/11) and Academy of Finland (Decision No. 284728). The work was done in the frameworks of the Celtic-Plus OPERA-Net2 project, which is funded by Tekes and the French Ministry of Industry, and the Academy of Finland TT5G project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olli Apilo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apilo, O., Lasanen, M. & Mämmelä, A. Energy-Efficient Dynamic Point Selection and Scheduling Method for Intra-cell CoMP in LTE-A. Wireless Pers Commun 86, 705–726 (2016). https://doi.org/10.1007/s11277-015-2953-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2953-6

Keywords

Navigation