Skip to main content
Log in

A 3–6 GHz Current Reused Noise Canceling Low Noise Amplifier for WLAN and WPAN Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A new ultra-wideband common gate low noise amplifier (LNA) for 3–6 GHz WLAN and WPAN applications is presented in which a current reused noise canceling structure utilized in the first stage not only provides a suitable noise performance, but also enhances the linearity characteristics of the LNA in a power efficient manner needed by WLAN/WPAN applications. The overall structure of the proposed LNA, consisting of three stages, namely input matching common gate stage with noise canceling, gain stage, and buffer one, is designed, laid out, and analyzed in 0.18 µm RF CMOS process. The LNA has a noise figure of 3.5–3.6 dB, a high and flat power gain of 20.27 ± 0.13 dB, and input and output losses of better than −11 and −14 dB, respectively, over the entire frequency band of 3–5 GHz, while these parameters are 3.5 dB, 20.75 ± 0.25 dB, −15 and −9 dB for the frequency band of 5–6 GHz, respectively. IIP2 and IIP3 of the proposed topology are equal to 25.9 and −1.85 dBm, respectively, at 4 GHz frequency. The proposed LNA has 15.3 mW power dissipation from a 1.8 V supply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Siwiak, K., Withington, P., & Phelan, S. (2001). Ultra-wide band radio: The emergence of an important new technology. In Proceedings of IEEE Vehicular Technology Conference, (VTC'01) (Vol. 2, pp. 1169–1172).

  2. Multi-Band OFDM Physical Layer Proposal for IEEE 802.15 Task Group 3a, ftp.802wirelessworld.com/15/Archive/2003/Jul03/03268r3P802-15TG3a-Multi-Band-CFPDocument.Doc

  3. DS-UWB Physical Layer Submission to 802.15 Task Group 3a, ftp.802wirelessworld.com/15/04/15-04-0137-03-003a-merger2-proposal-ds-uwb-update.doc

  4. IEEE 802.15 WPAN High Rate Alternative PHY Task Group 3a (TG3a). (2003). http://www.ieee802.org/15/pub/TG3a.html

  5. Rashtian, H., & Mirabbasi, Sh. (2014). Applications of body biasing in multistage CMOS low-noise amplifiers. IEEE Transaction on Circuits and Systems I: Reg Papers, 61(6), 1638–1647.

    Article  Google Scholar 

  6. Khurram, M., & Rezaul Hasan, S. M. (2012). A 3–5 GHz current-reuse Gm-boosted CG LNA for ultra wideband in 130 nm CMOS. IEEE Transaction on VLSI Systems, 20(3), 400–409.

    Article  Google Scholar 

  7. Kim, C. W., Kang, M. S., Anh, P. T., Kim, H. T., & Lee, S. G. (2005). An ultra-wideband CMOS low noise amplifier for 3–5GHz UWB system. IEEE Journal of Solid-state Circuits, 40(2), 544–547.

    Article  Google Scholar 

  8. Chang, C. P., & Choung, H. R. (2005). 0.18 µm 3–6 GHz CMOS broadband LNA for UWB radio. Electronics Letters, 41(12), 696–698.

    Article  Google Scholar 

  9. Zhang, H., Fan, X., & Sinencio, E. S. (2009). A low power, linearized, ultra wideband LNA design technique. IEEE Journal of Solid State Circuits, 44(2), 320–330.

    Article  Google Scholar 

  10. Shaeffer, D. K. & Lee, T. H. (1997). 1.5 V 1.5 GHz CMOS low noise amplifier. IEEE Journal of Solid State Circuits, 32(5), 745–759.

  11. Nga, T. T. T. (2012). Ultra low-power low-noise amplifier design for 2.4 GHz ISM band applications. Ph.D. dissertation, Nanyang Tech. Univ.

  12. Lin, Y.-J., Hsu, S. H., Jin, J. D., & Chan, C. Y. (2007). A 3.1–10.6 GHz ultra wideband CMOS LNA with current-reused technique. IEEE Journal of Microwave and Wireless Component Letters, 17(3), 232–234.

  13. Saghafi, A. & Nabavi, A. (2006). An ultra-wideband low-noise amplifier for 3–5 GHz wireless systems. In Proceeding IEEE International Conference of Microelectronics (ICM’06) (pp. 20–23).

  14. Ziabakhsh, S., Alavi-Rad, H., & Yagoub, M. C. E. (2012). A high-gain low-power 2–14 GHz ultra-wide-band CMOS LNA for wireless receivers. International Journal of Electronics and Communications (AEÜ), 66(9), 727–731.

    Article  Google Scholar 

  15. Khurram, M., & Rezaul Hasan, S. M. (2011). Novel analysis and optimization of gm-boosted common-gate UWB LNA. Microelectronics Journal, 42, 253–264.

    Article  Google Scholar 

  16. Liao, C. F. & Liu, S. I. (2007). A broadband noise-canceling CMOS LNA for 3.1–10.6-GHz UWB receivers. IEEE Journal of Slid-State Circuits, 42(2), 329–339.

  17. Asgaran, S., Jamal Deen, M., & Chen, C. H.(2007). Design of the input matching network of RF CMOS LNAs for low-power operation. IEEE Transactions on Circuits and Systems I: Reg. Papers, 54(3), 544–554.

  18. Wang, Y. S., & Lu, L. H. (2005). 5.7-GHz low-power variable gain LNA in 0.18-µm CMOS. Electronics Letters, 41(2), 66–68.

    Article  Google Scholar 

  19. Shouxian, M., Guo, M., Seng, Y. K., & Anh, D. M. (2005). A modified architecture used for input matching in CMOS low-noise amplifiers. IEEE Transactions on Circuits Systems II, Express Briefs, 52(11), 784–788.

    Article  Google Scholar 

  20. Jin, X., Ou, J., Chen, C. H., Liu, W., Deen, M. J., Gray, P. R., & Hu, C. (1998). An effective gate resistance model for CMOS RF and noise modeling. Digital Technology papers IEDM (pp. 961–964).

  21. Lee, T. H. (2004). The design of CMOS radio frequency integrated circuits (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  22. Zhang, H., Fan, X., & Sinencio, E. S. (2009). A wideband CMOS low noise amplifier employing noise and IM2 distortion cancellation for a digital TV tuner. IEEE Journal of Solid-State Circuits, 44(2), 320–330.

    Article  Google Scholar 

  23. Moezzi, M., & Sharif Bakhtiar, M. (2012). Wideband LNA using active inductor with multiple feed-forward noise reduction paths. IEEE Transactions on Microwave Theory and Technology, 60(4), 1069–1078.

    Article  Google Scholar 

  24. Im, D., Nam, I., Kim, H., & Lee, K. (2009). A wideband CMOS low noise amplifier employing noise and IM2 distortion cancellation for a digital TV tuner. IEEE Journal of Solid-State Circuits, 44(3), 686–698.

    Article  Google Scholar 

  25. Kim, N., Aparin, V., Barnett, K., & Persico, C. (2006). A cellular-band CDMA CMOS LNA linearized using active post-distortion. IEEE Journal of Solid-State Circuits, 41(7), 1530–1534.

    Article  Google Scholar 

  26. Geddada, H. M., Park, J. W., & Martinez, J. S. (2009). Robust derivative superposition method for linearizing broadband LNAs. IEEE Electronics Letters, 45(9), 435–436.

    Article  Google Scholar 

  27. Alavi-Rad, H., Ziabakhsh, S., Ziabakhsh, S., & Yagoub, M. C. E. (2013). A 0.9 V CMOS 3–5 GHz broadband flat gain low-noise amplifier for ultra-wide band receivers. Canadian Journal of Electrical Computer Engineering, 36(2), 87–91.

    Article  Google Scholar 

  28. Nouri, M., & Karimi, Gh. (2014). A novel 2.5–3.1 GHz wide-band low-noise amplifier in 0.18 µm CMOS. Wireless Personal Communications, 79(3), 1993–2003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Saberkari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saberkari, A., Shirmohammadli, V. & Yagoub, M.C.E. A 3–6 GHz Current Reused Noise Canceling Low Noise Amplifier for WLAN and WPAN Applications. Wireless Pers Commun 86, 1359–1376 (2016). https://doi.org/10.1007/s11277-015-2993-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2993-y

Keywords

Navigation