Skip to main content
Log in

A Metamaterial Inspired Compact Open Split Ring Resonator Antenna for Multiband Operation

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this work, a metamaterial inspired compact open split ring resonator (OSRR) antenna is investigated for multiband operation. The proposed antenna uses closely employed open split rings as a radiating element which provides efficient size reduction and broader bandwidth performance. The proposed antenna with the overall size of 27.5 × 16.08 × 1.6 mm3 is fabricated and tested. The measured results indicate that it covers 2.4/5.2/5.8 GHz (Wireless LAN), 5.5 GHz (WiMAX) and 7.4 GHz (X-band downlink) applications. The OSRR antenna has achieved size reduction of 38.83% and 52.83% compared to the split ring resonator and ring antennas respectively. It is observed that the proposed antenna produces better performance than the existing antennas in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Chen, H., Yang, X., Yin, Y. Z., Fan, S. T., & Wu, J. J. (2013). Triband planar monopole antenna with compact radiator for WLAN/WiMAX applications. IEEE Antennas and Wireless Propagation Letters, 12, 1440–1443.

    Article  Google Scholar 

  2. Liu, W. C., Wu, C. M., & Chu, N. C. (2012). A compact low-profile dual-band antenna for WLAN and WAVE applications. AEU—International Journal of Electronics and Communication, 66, 467–471.

    Google Scholar 

  3. Xu, Y., Luan, Y. C., & Jiao, Y. C. (2012). Compact CPW-fed printed monopole antenna with triple-band characteristics for WLAN/WiMAX applications. Electronics Letters, 48, 1519–1520.

    Article  Google Scholar 

  4. Ghatak, R., Mishra, R. K. S., & Poddar, D. R. (2008). Perturbed Sierpinski carpet antenna with CPW feed for IEEE 802. 11 a/b WLAN application. IEEE Antennas and Wireless Propagation Letters, 7, 742–744.

    Article  Google Scholar 

  5. Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C., & Schultz, S. (2000). Composite medium with simultaneously negative permeability and permittivity. Physics Review Letters, 84, 4184–4187.

    Article  Google Scholar 

  6. Pendry, J. B., Holden, A. J., Robbins, D. J., & Stewart, W. J. (1999). Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions Microwave Theory and Techniques, 47, 2075–2084.

    Article  Google Scholar 

  7. Baena, J. D., Bonache, J., Martín, F., Sillero, R. M., Falcone, F., Lopetegi, T., et al. (2005). Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines. IEEE Transactions Microwave Theory and Techniques, 53, 1451–1461.

    Article  Google Scholar 

  8. Alici, K. B., & Ozbay, E. (2007). Electrically small split ring resonator antennas. Journal of Applied Physics, 101, 083101–083104.

    Article  Google Scholar 

  9. Antoniades, M. A., & Eleftheriades, G. V. (2009). A broadband dual-mode monopole antenna using NRI-TL metamaterial loading. IEEE Antennas and Wireless Propagation Letters, 8, 258–261.

    Article  Google Scholar 

  10. Barbuto, M., Monti, A., Bilotti, F., & Toscano, A. (2013). Design of a non-foster actively loaded SRR and application in metamaterial-inspired components. IEEE Transactions on Antennas and Propagation, 61, 1219–1227.

    Article  Google Scholar 

  11. Ntaikos, D. K., Bourgis, N. K., & Yioultsis, T. V. (2011). Metamaterial-based electrically small multiband planar monopole antennas. IEEE Antennas and Wireless Propagation Letters, 10, 963–966.

    Article  Google Scholar 

  12. Barbuto, M., Bilotti, F., & Toscano, A. (2012). Design of a multifunctional SRR-loaded printed monopole antenna. International Journal of RF and Microwave Computer-Aided Engineering, 22, 552–557.

    Article  Google Scholar 

  13. Rajeshkumar, V., & Raghavan, S. (2015). Compact metamaterial inspired triple band antenna for reconfigurable WLAN/WiMAX applications. International Journal of Electronics and Communication (AEÜ), 69, 274–280.

    Article  Google Scholar 

  14. Basaran, S. C., & Sertel, K. (2013). Dual wideband CPW-fed monopole antenna with split-ring resonators. Microwave and Optical Letters, 55, 2088–2092.

    Article  Google Scholar 

  15. Rajkumar, R., & Usha Kiran, K. (2016). A compact metamaterial multiband antenna for WLAN/WiMAX/ITU band applications. International Journal of electronics and communication (AEÜ), 70, 599–604.

    Article  Google Scholar 

  16. Basaran, S. C., Olgun, U., & Sertel, K. (2013). Multiband monopole antenna with complementary split ring resonators for WLAN and WiMAX applications. Electronics Letters, 49, 10–11.

    Article  Google Scholar 

  17. Elsdon, M., & Yurduseven, O. (2015). Direct-fed reduced size patch antenna using array of cSRR in the ground plane. Microwave and Optical Technology Letters, 57, 1526–1529.

    Article  Google Scholar 

  18. Mitra, D., & Chaudhuri, S. R. B. (2012). CPW-fed miniaturized split ring-loaded slot antenna. Microwave and Optical Technology Letters, 54, 1907–1911.

    Article  Google Scholar 

  19. Srivastava, K. V., Sarkar, D., & Saurav, K. (2014). Multi-band microstrip-fed slot antenna loaded with split-ring resonator. Electronics Letters, 50, 1498–1500.

    Article  Google Scholar 

  20. Velez, A., Aznar, F., Bonache, J., Velazquez-Ahumada, M. C., Martel, J., & Martin, F. (2009). Open complementary split ring resonators (OCSRRs) and their application to wideband CPW band pass filters. IEEE Microwave and Wireless and Components Letters, 19, 197–199.

    Article  Google Scholar 

  21. Martel, J., Marqués, R., Falcone, F., Baena, J. D., Medina, F., Martín, F., et al. (2004). A new LC series element for compact bandpass filter design. IEEE Microwave and Wireless Components Letters, 14, 210–212.

    Article  Google Scholar 

  22. Aznar, F., Vélez, A., Durán-Sindreu, M., Bonache, J., & Martín, F. (2010). Open complementary split ring resonators: Physics, modelling, and analysis. Microwave and Optical Technology Letters, 52, 1520–1526.

    Article  Google Scholar 

  23. Chen, H., Zhang, J., Bai, Y., Luo, Y., Ran, L., Jiang, Q., et al. (2006). Experimental retrieval of the effective parameters of metamaterials based on a waveguide method. Optics Express, 14, 12944–12949.

    Article  Google Scholar 

  24. Smith, D. R., Vier, D. C., Koschny, T., & Soukoulis, C. M. (2005). Electromagnetic parameter retrieval from in homogeneous metamaterials. Physics Review B, 71, 36617–36627.

    Article  Google Scholar 

  25. Smith, D. R., Schultz, S., Markos, P., & Soukoulis, C. M. (2002). Determination of negative permittivity and permeability of metamaterials from reflection and transmission coefficients. Physics Review B, 65, 195104–195109.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rengasamy Rajkumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajkumar, R., Usha Kiran, K. A Metamaterial Inspired Compact Open Split Ring Resonator Antenna for Multiband Operation. Wireless Pers Commun 97, 951–965 (2017). https://doi.org/10.1007/s11277-017-4545-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4545-0

Keywords

Navigation