Skip to main content

Advertisement

Log in

An Energy Efficient Stable Clustering Approach Using Fuzzy Type-2 Bat Flower Pollinator for Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Wireless sensor network (WSN) is a cost-effective networking solution for information updating in the coverage radius or in the sensing region. To record a real time event, large number of sensor nodes (SNs) need to be arranged systematically, such that information collection is possible for longer span of time. But, the hurdle faced by WSN is the limited resources of SNs. Hence, there is high demand to design and implement an energy efficient scheme to prolong the operational lifetime of WSN. Clustering based routing is the most suitable approach to support for load balancing, fault tolerance, and reliable communication to prolong performance parameters of WSN. These performance parameters are achieved at the cost of reduced lifetime of cluster head (CH). To overcome such limitations in clustering based hierarchical approach, efficient CH selection algorithm, and optimized routing algorithm are essential to design efficient solution for larger scale networks. In this paper, bat flower pollinator (BFP) using fuzzy type-2 based clustering approach is proposed to enhance the network lifespan. Simulation outcomes show that the proposed algorithm outperforms competitive clustering algorithms in the context of energy consumption, stability period and system lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks,38(4), 393–422.

    Article  Google Scholar 

  2. Anisi, M. H., Abdul-Salaam, G., Idris, M. Y. I., Wahab, A. W. A., & Ahmedy, I. (2015). Energy harvesting and battery power based routing in wireless sensor networks. Wireless Networks,23, 249–266.

    Article  Google Scholar 

  3. Pantazis, N. A., Nikolidakis, S. A., & Vergados, D. D. (2013). Energy-Efficient routing protocols in wireless sensor networks: A survey. IEEE Communications, Surveys & Tutorials,15(2), 551–591.

    Article  Google Scholar 

  4. Halawani, S., & Khan, A. W. (2010). Sensors lifetime enhancement techniques in wireless sensor networks—a survey. Journal of Computing,2(5), 34–47.

    Google Scholar 

  5. Idris, M. Y. I., Znaid, A. M. A., Wahab, A. W. A., Qabajeh, L. K., & Mahdi, O. A. (2016). Low communication cost (LCC) scheme for localizing mobile wireless sensor networks. Wireless Networks,23, 737–747.

    Google Scholar 

  6. Heinzelman, W. B., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proc. 33rd annual Hawaii international conference on system siences (HICSS-33) (p. 223). IEEE. https://doi.org/10.1109/hicss.2000.926982.

  7. Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications,1(4), 660–670. https://doi.org/10.1109/TWC.2002.804190.

    Article  Google Scholar 

  8. Manjeshwar, A., & Agrawal, D. P. (2001). TEEN: A routing protocol for enhanced efficiency in wireless sensor networks. In 15th International parallel and distributed processing symposium (IPDPS’01) workshops (pp. 2009–2015). USA, California.

  9. Manjeshwar, A., & Agrawal, D. P. (2002). APTEEN: A hybrid protocol for efficient routing and comprehensive information retrieval in wireless sensor networks. In International parallel and distributed processing symposium (pp. 195–202). Florida.

  10. Smaragdakis, G., Matta, I., & Bestavros, A. (2004). SEP: A stable election protocol for clustered heterogeneous wireless sensor networks. In Proc. international workshop on SANPA. http://open.bu.edu/xmlui/bitstream/handle/2144/1548/2004-022-sep.pdf?sequence = 1.

  11. Aderohunmu, F. A., & Deng, J. D. An enhanced stable election protocol (E-SEP) for clustered heterogeneous WSN, Department of Information Science, University of Otago, Dunedin 9054, New Zealand.

  12. Kaur, H., Sharma, H., & Manu, G. (2014). Multi-hop routing SEP (MR-SEP) for clustering in wireless sensor network. International Journal of Engineering Technology, Management and Applied Sciences,2(3), 54–65.

    Google Scholar 

  13. Qing, L., Zhu, Q., & Wang, M. (2006). Design of a distributed energy-efficient clustering algorithm for heterogeneous wireless sensor network. Computer Communications,29, 2230–2237. https://doi.org/10.1016/j.comcom.2006.02.017.

    Article  Google Scholar 

  14. Kang, S. H., & Nguyen, T. (2012). Distance based thresholds for cluster head selection in wireless sensor networks. IEEE Communications Letters,16(9), 1396–1399. https://doi.org/10.1109/LCOMM.2012.073112.120450.

    Article  Google Scholar 

  15. Mahajan, S., Malhotra, J., & Sharma, S. (2014). An energy balanced QoS based cluster head selection strategy for WSN. Egyptian Informatics Journal,15(3), 189–199.

    Article  Google Scholar 

  16. Soro, S., & Heinzelman, W. B. (2005). Prolonging the lifetime of wireless sensor networks via unequal clustering. In Proceedings of the 19th IEEE international parallel and distributed processing symposium (IPDPS ‘05) (pp. 236–243). Washington, DC, USA, April 2005.

  17. Tarhani, M., Kavian, Y. S., & Siavoshi, S. (2014). SEECH: Scalable energy efficient clustering hierarchy protocol in wireless sensor networks. IEEE Sensors Journal,14(11), 3944–3954. https://doi.org/10.1109/JSEN.2014.2358567.

    Article  Google Scholar 

  18. Mittal, N., & Singh, U. (2015). Distance-based residual energy-efficient stable election protocol for WSNs. Arabian Journal of Science and Engineering,40(6), 1637–1646. https://doi.org/10.1007/s13369-015-1641-x.

    Article  Google Scholar 

  19. Mittal, N., Singh, U., & Sohi, B. S. (2017). A stable energy efficient clustering protocol for wireless sensor networks. Wireless Networks,23(6), 1809–1821. https://doi.org/10.1007/s11276-016-1255-6.

    Article  Google Scholar 

  20. Adnan, Md A, Razzaque, M. A., Ahmed, I., & Isnin, I. F. (2014). Bio-Mimic optimization strategies in wireless sensor networks: A survey. Sensors,14, 299–345. https://doi.org/10.3390/s140100299.

    Article  Google Scholar 

  21. Hussain, S., & Matin, A. W. (2006). Hierarchical cluster-based routing in wireless sensor networks. In IEEE/ACM international conf. on information processing in sensor networks, IPSN, 2006.

  22. Attea, B. A., & Khalil, E. A. (2012). A new evolutionary based routing protocol for clustered heterogeneous wireless sensor networks. Applied Soft Computing,12, 1950–1957. https://doi.org/10.1016/j.asoc.2011.04.007.

    Article  Google Scholar 

  23. Khalil, E. A., & Attea, B. A. (2011). Energy-aware evolutionary routing protocol for dynamic clustering of wireless sensor networks. Swarm and Evolutionary Computation. https://doi.org/10.1016/j.swevo.2011.06.004.

    Article  Google Scholar 

  24. Khalil, E. A., & Attea, B. A. (2013). Stable-aware evolutionary routing protocol for wireless sensor networks. Wireless Personal Communications,69(4), 1799–1817.

    Article  Google Scholar 

  25. Mittal, N., Singh, U., & Sohi, B. S. (2017). A novel energy efficient stable clustering approach for wireless sensor networks. Wireless Personal Communications,95, 2947–2971.

    Article  Google Scholar 

  26. Mittal, N., Singh, U., & Sohi, B. S. (2017). Harmony search algorithm based threshold-sensitive energy-efficient clustering protocols for WSNs. Ad Hoc & Sensor Wireless Networks,36, 149–174.

    Google Scholar 

  27. Mittal, N., Singh, U., & Sohi, B. S. (2018). A boolean spider monkey optimization based energy efficient clustering approach for WSNs. Wireless Networks,24(6), 2093–2109.

    Article  Google Scholar 

  28. Mittal, N., Singh, U., & Sohi, B. S. (2018). An energy aware cluster-based stable protocol for wireless sensor networks. Neural Computing and Applications (NCAA). https://doi.org/10.1007/s00521-018-3542-x.

    Article  Google Scholar 

  29. Mittal, N., Singh, U., & Sohi, B. S. (2016). Modified Grey Wolf optimizer for global engineering optimization. Applied Computational Intelligence and Soft Computing. https://doi.org/10.1155/2016/7950348.

    Article  Google Scholar 

  30. Gupta, I., Riordan, D., & Sampalli, S. (2005). Cluster-Head election using fuzzy logic for wireless sensor networks. In 3rd Annual communication networks and services research conference (pp. 255–260).

  31. Ran, G., Zhang, H., & Gong, S. (2010). Improving on LEACH protocol of wireless sensor networks using Fuzzy Logic. Journal of Information and Computational Science, 7(3), 767–775.

    Google Scholar 

  32. Kim, J. M., Park, S. H., Han, Y. J., & Chung, T. M. (2008). CHEF: Cluster head election mechanism using fuzzy logic in wireless sensor networks. In 10th International conference on advanced communication technology (Vol. 1, pp. 654–659).

  33. Sert, S. A., Bagci, H., & Yazici, A. (2015). MOFCA: Multi-objective fuzzy clustering algorithm for wireless sensor networks. Applied Soft Computing,30, 151–165.

    Article  Google Scholar 

  34. Salgotra, R., & Singh, U. (2016). A novel bat flower pollination algorithm for synthesis of linear antenna arrays. Neural Computing and Applications, 30, 2269–2282.

    Article  Google Scholar 

  35. Yang, X. S. (2010). A new metaheuristic bat-inspired algorithm. In Nature inspired cooperative strategies for optimization (NICSO 2010) (pp. 65–74). Berlin: Springer.

  36. Yang, X. S. (2012). Flower pollination algorithm for global optimization. In International conference on unconventional computing and natural computation (pp. 240-249). Berlin Heidelberg: Springer.

  37. Sharma, S., Mittal, N., Salgotra, R., & Singh, U. (2017). Linear antenna array synthesis using bat flower pollinator. In IEEE 4th International Conference on Innovations in information Embedded and Communication Systems (ICIIECS) (Vol. 3, pp. 1036–1039). 17th–18th March, 2017.

  38. Yang, X. S., & Xingshi, H. (2013). Bat algorithm: Literature review and applications. International Journal of Bio Inspired Computing,5(3), 141–149.

    Article  Google Scholar 

  39. Liang, Q., & Mendel, J. M. (2000). Interval type-2 fuzzy logic systems: theory and design. IEEE Transactions on Fuzzy Systems,8(5), 535–550.

    Article  Google Scholar 

  40. Hwang, J. H., Kwak, H. J., & Park, G. T. (2011). Adaptive interval type-2 fuzzy slidingmode control for unknown chaotic system. Nonlinear Dynamics,63(3), 491–502.

    Article  MathSciNet  Google Scholar 

  41. Mittal, N. (2018). Moth flame optimization based energy efficient stable clustered routing approach for wireless sensor networks. Wireless Personal Communications, 1–18.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Mittal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mittal, N. An Energy Efficient Stable Clustering Approach Using Fuzzy Type-2 Bat Flower Pollinator for Wireless Sensor Networks. Wireless Pers Commun 112, 1137–1163 (2020). https://doi.org/10.1007/s11277-020-07094-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07094-8

Keywords

Navigation