Skip to main content
Log in

Application Layer Energy-Efficient Scalable Video Cooperative Multicast in Cellular Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In conventional multicasting of cellular networks, due to channel diversity of receivers, data rates of the base stations (BS) are limited to ensure all mobile stations (MS) receive packets correctly. This method, besides the increased power consumption, deprives MSs from getting better video quality than they could get at higher bit-rates. This paper proposes two new application layer multicasting schemes named HMCM and H2CM that exploit cooperative multicast (CM) of two-layer scalable video coding to transmit each layer of video in two different paths in order to reduce power consumption. In both methods, the base layer of video is transmitted by the BS through cellular network (e.g., 4G or 5G) to all MSs in the cell area. This makes sure minimum video quality is guaranteed for all MSs. In the second stage, the enhancement layer of video is transmitted by CM in multi-stages to all MSs that helps to reduce power consumption. Using mathematical analysis and NS3 simulator, it is shown, compared to the conventional multicasting of single layer video, both HMCM and H2CM, at a given error rate, depending on the ratio of the base layer to total video bit-rate, can reduce power consumption of the BS by 70% and 40% respectively and 12% reduction in total power consumption by H2CM. Moreover, since the proposed approaches are entirely implemented in the application layer, they can be used in most wireless standards without any modifications to the network stack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhao, H. V., & Su, W. (2010). Cooperative wireless multicast: Performance analysis and power/location optimization. IEEE Transactions on Wireless Communications, 9(6), 2088–2100.

    Article  Google Scholar 

  2. ViaviSolutions (2015). LTE multimedia broadcast multicast services (MBMS). White paper

  3. Bao, C. W., & Liao, W. (2005). Performance analysis of reliable MAC-layer multicast for IEEE 802.11 wireless lans. In 2005 IEEE international conference on communications, 2005. ICC 2005 (Vol 2, pp. 1378–1382). IEEE

  4. Suh, C., & Mo, J. (2008). Resource allocation for multicast services in multicarrier wireless communications. IEEE Transactions on Wireless Communications, 7(1), 27–31. https://doi.org/10.1109/TWC.2008.060467.

    Article  Google Scholar 

  5. Molnar, A., & Muntean, C. H. (2019). User-based adaptive multimedia delivery over 5G network. In Paving the Way for 5G Through the Convergence of Wireless Systems (pp. 1–17), IGI Global

  6. She, J., Hou, F., Ho, P. H., & Xie, L. L. (2007). IPTV over WiMAX: Key success factors, challenges, and solutions. IEEE Communications Magazine, 45(8), 87–93. https://doi.org/10.1109/MCOM.2007.4290319.

    Article  Google Scholar 

  7. Hasan, Z., Boostanimehr, H., & Bhargava, V. K. (2011). Green cellular networks: A survey, some research issues and challenges. IEEE Communications Surveys & Tutorials, 13(4), 524–540.

    Article  Google Scholar 

  8. Hung, H. J., Ho, T. Y., Lee, S. Y., Yang, C. Y., & Yang, D. N. (2018). Relay selection for heterogeneous cellular networks with renewable green energy sources. IEEE Transactions on Mobile Computing, 17(3), 661–674.

    Article  Google Scholar 

  9. Holtkamp, H., Auer, G., Bazzi, S., & Haas, H. (2014). Minimizing base station power consumption. IEEE Journal on Selected Areas in Communications, 32(2), 297–306.

    Article  Google Scholar 

  10. Fehske, A., Fettweis, G., Malmodin, J., & Biczok, G. (2011). The global footprint of mobile communications: The ecological and economic perspective. IEEE Communications Magazine, 49(8), 55–62.

    Article  Google Scholar 

  11. Zhou, F., Wu, Y., Hu, R. Q., Wang, Y., & Wong, K. K. (2018). Energy-efficient noma enabled heterogeneous cloud radio access networks. IEEE Network, 32(2), 152–160.

    Article  Google Scholar 

  12. Zhou, Y., Liu, H., Pan, Z., Tian, L., Shi, J., & Yang, G. (2014). Two-stage cooperative multicast transmission with optimized power consumption and guaranteed coverage. IEEE Journal on Selected Areas in Communications, 32(2), 274–284. https://doi.org/10.1109/JSAC.2014.141208.

    Article  Google Scholar 

  13. Zhou, Y., Liu, H., Pan, Z., Tian, L., & Shi, J. (2017). Cooperative multicast with location aware distributed mobile relay selection: Performance analysis and optimized design. IEEE Transactions on Vehicular Technology, 66(9), 8291–8302.

    Article  Google Scholar 

  14. Tehrani, M. N., Uysal, M., & Yanikomeroglu, H. (2014). Device-to-device communication in 5G cellular networks: Challenges, solutions, and future directions. IEEE Communications Magazine, 52(5), 86–92.

    Article  Google Scholar 

  15. Ramamurthy, A., Sathya, V., Ghosh, S., Franklin, A., & Tamma, B. R. (2019). Dynamic power control and scheduling in full duplex cellular network with d2d. Wireless Personal Communications, 104(2), 695–726.

    Article  Google Scholar 

  16. Asadi, A., Wang, Q., & Mancuso, V. (2014). A survey on device-to-device communication in cellular networks. IEEE Communications Surveys & Tutorials, 16(4), 1801–1819.

    Article  Google Scholar 

  17. Liu, D., Wang, L., Chen, Y., Elkashlan, M., Wong, K. K., Schober, R., et al. (2016). User association in 5G networks: A survey and an outlook. IEEE Communications Surveys & Tutorials, 18(2), 1018–1044.

    Article  Google Scholar 

  18. Leyva-Mayorga, I., Torre, R., Pandi, S., Nguyen, G. T., Pla, V., Martinez-Bauset, J., & Fitzek, F. H. (2018). A network-coded cooperation protocol for efficient massive content distribution. In Proceeding IEEE global communication conference (GLOBECOM) (pp. 1–7). IEEE

  19. Zhang, Q., Heide, J., Pedersen, M. V., & Fitzek, F. H. (2011). MBMS with user cooperation and network coding. In Global telecommunications conference (GLOBECOM 2011) (pp 1–6). IEEE

  20. Kuo, C. H., Wang, C. M., & Lin, J. L. (2011). Cooperative wireless broadcast for scalable video coding. IEEE Transactions on Circuits and Systems for Video Technology, 21(6), 816–824.

    Article  Google Scholar 

  21. Sun, Y., Wang, Z., Zhao, P., & Liu, Z. (2019). Improved intracluster cooperation schemes in wireless multicast systems. Wireless Personal Communications, 104(3), 979–994.

    Article  Google Scholar 

  22. Huynh-Thu, Q., & Ghanbari, M. (2006). Impact of jitter and jerkiness on perceived video quality. In 2nd international workshop on video processing and quality metrics (VPQM)

  23. Ghanbari, M. (1996). Postprocessing of late cells for packet video. IEEE Transactions on Circuits and Systems for Video Technology, 6(6), 669–678.

    Article  Google Scholar 

  24. Schwarz, H., Marpe, D., & Wiegand, T. (2007). Overview of the scalable video coding extension of the H.264/AVC standard. IEEE Transactions on circuits and systems for video technology, 17(9), 1103–1120.

    Article  Google Scholar 

  25. Ghanbari, M., & Seferidis, V. (1995). Efficient H.261-based two-layer video codecs for atm networks. IEEE Transactions on Circuits and Systems for Video Technology, 5(2), 171–175.

    Article  Google Scholar 

  26. Hua, S., Guo, Y., Liu, Y., Liu, H., & Panwar, S. S. (2011). Scalable video multicast in hybrid 3G/ad-hoc networks. IEEE Transactions on Multimedia, 13(2), 402–413.

    Article  Google Scholar 

  27. Hwang, D., Chau, P., Shin, J., & Lee, T. J. (2015). Two cooperative multicast schemes of scalable video in relay-based cellular networks. IET Communications, 9(7), 982–989.

    Article  Google Scholar 

  28. Alay, Ö., Korakis, T., Wang, Y., Erkip, E., & Panwar, S. S. (2010). Layered wireless video multicast using relays. IEEE Transactions on Circuits and Systems for Video Technology, 20(8), 1095–1109.

    Article  Google Scholar 

  29. Wang, S. C., & Liao, W. (2013). Cooperative multicasting for wireless scalable video transmissions. IEEE Transactions on Communications, 61(9), 3980–3989.

    Article  Google Scholar 

  30. Ghahremani, S., & Ghanbari, M. (2017). Error resilient video transmission in ad hoc networks using layered and multiple description coding. Multimedia Tools and Applications, 76(6), 9033–9049.

    Article  Google Scholar 

  31. Sirkeci-Mergen, B., & Scaglione, A. (2007). On the power efficiency of cooperative broadcast in dense wireless networks. IEEE Journal on Selected Areas in Communications, 25(2), 497–507.

    Article  Google Scholar 

  32. Chen, L., Liu, X., Wang, Q., & Wang, Y. (2011). A real-time multicast routing scheme for multi-hop switched fieldbuses. In: INFOCOM, 2011 Proceedings IEEE (pp. 3209–3217). IEEE

  33. Hou, F., Cai, L. X., Ho, P. H., Shen, X., & Zhang, J. (2009). A cooperative multicast scheduling scheme for multimedia services in ieee 802.16 networks. IEEE Transactions on Wireless Communications, 8(3), 1508–1519.

    Article  Google Scholar 

  34. Holma, H., & Toskala, A. (2009). LTE for UMTS: OFDMA and SC-FDMA based radio access. Hoboken: Wiley.

    Book  Google Scholar 

  35. Le, T. A., & Nguyen, H. (2014). End-to-end transmission of scalable video contents: Performance evaluation over EvalSVC—A new open-source evaluation platform. Multimedia Tools and Applications, 72(2), 1239–1256.

    Article  Google Scholar 

  36. Wilson, D., & Ghanbari, M. (1999). Optimization of MPEG-2 SNR scaleable codecs. IEEE Transactions on Image Processing, 8(10), 1435–1438.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaveh Mehdipour Chari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehdipour Chari, K., Ghanbari, M. Application Layer Energy-Efficient Scalable Video Cooperative Multicast in Cellular Networks. Wireless Pers Commun 112, 2503–2517 (2020). https://doi.org/10.1007/s11277-020-07161-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07161-0

Keywords

Navigation